I-Ching-Paar-Binärcomputer


10

Einführung

I Ging ist ein alter Weissagungstext und der älteste der chinesischen Klassiker. Es verwendet eine Art der Wahrsagerei, die als Cleromantie bezeichnet wird und scheinbar zufällige Zahlen erzeugt.

Die Grundeinheit des Zhou yi ist das Hexagramm (卦 guà), eine Figur, die aus sechs gestapelten horizontalen Linien (爻 yáo) besteht. Jede Linie ist entweder unterbrochen oder ungebrochen. Der empfangene Text des Zhou yi enthält alle 64 möglichen Hexagramme

Die King Wen-Sequenz präsentiert die 64 Hexagramme, die in 32 Paare gruppiert sind. Für 28 der Paare wird das zweite Hexagramm erstellt, indem das erste auf den Kopf gestellt wird (dh 180 ° Drehung). Die Ausnahme von dieser Regel gilt für symmetrische Hexagramme, die nach dem Drehen gleich sind. Partner für diese werden durch Invertieren jeder Linie angegeben: Festkörper werden gebrochen und gebrochen wird fest.

 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
    1        2        3        4            5        6        7        8   

 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
    9       10       11       12           13       14       15       16   

 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
   17       18       19       20           21       22       23       24   

 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
   25       26       27       28           29       30       31       32   

 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
   33       34       35       36           37       38       39       40   

 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
   41       42       43       44           45       46       47       48   

 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
   49       50       51       52           53       54       55       56   

 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄      ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
 ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
 ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄      ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
   57       58       59       60           61       62       63       64   

Anfrage

Ziel ist es, ein kleines Tool zu erstellen, das ein Paar für einen bestimmten Hexagrammwert berechnet.

  • Um dies ins Binäre zu übersetzen, benutze ich : broken line = 0, unbroken line = 1, so hexagram Number 1hat binary value 63.

  • Das Tool nimmt genau ein Argument, eine Zahl zwischen 1 und 64, als Hexagrammpaaranforderung und erzeugt zwei Exagramme, die die angeforderte Zahl und sein Gegenteil enthalten (Erklärung: Wenn arg ungerade ist, muss die Ausgabe ein Hexagramm von arg und arg + 1 enthalten , aber wenn arg ist gerade, die Ausgabe muss ein Hexagramm von arg - 1 und arg ) enthalten.

  • Das Werkzeug haben , drehen sich um 180 ° angefordert Hexagramm , während nicht symetrisch , oder umkehren sie , wenn symetric .

  • Es ist keine Karte außer dieser autorisiert, die in irgendeiner Form gespeichert werden kann, die Sie nützlich finden

     {  1:63,    3:34,    5:58,    7:16,    9:59,   11:56,   13:47,   15: 8,  
       17:38,   19:48,   21:37,   23: 1,   25:39,   27:33,   29:18,   31:14,  
       33:15,   35: 5,   37:43,   39:10,   41:49,   43:62,   45: 6,   47:22,  
       49:46,   51:36,   53:11,   55:44,   57:27,   59:19,   61:51,   63:42 }
    

    Diese Karte enthält den Binärwert jedes 1. Exagramms aus Paaren. Für jedes Paar muss also der erste aus dieser Karte entnommen werden, der zweite muss jedoch gemäß der vorherigen Regel berechnet werden.

  • Ouput muss zwei Hexagramme und seine Zahlen enthalten. Stichprobe:

    iChingHexaPair 1
     ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
        1        2   
    
    iChingHexaPair 14
     ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄ ▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
     ▄▄▄ ▄▄▄  ▄▄▄▄▄▄▄
     ▄▄▄▄▄▄▄  ▄▄▄▄▄▄▄
       13       14   
    
  • Es gilt die Standardlücke

  • Bitte vermeiden Sie unfreie Sprache oder Post-Output für vollständige Testfälle.

Dies ist ein , also gewinnt die kürzeste Antwort in Zeichen .

Nach Sprache am kürzesten



@ MartinBüttner Ja, danke! Vielleicht könnten wir ein Tag hinzufügen: i-ching (ich habe sie nicht gefummelt, als ich nach I-Ching, Hexagramm und so gesucht habe) Aber meine Frage, wenn mehr überrotating binary by 180°
F. Hauri

2
Beachten Sie, dass derzeit die Standardlücke in Bezug auf nicht freie Sprachen nur für die Herausforderungen von Polizisten und Räubern gilt .
Alex A.

@ AlexA.Frage geändert: Nicht freie Sprache ist nicht erwünscht, aber nicht verboten. Für nicht freie Sprachen ist ein Ausgabemuster erforderlich .
F. Hauri

Antworten:


4

Python 2, 65 61

Erzeugt Unicode-I-Ching-Hexagrammpaare

def t(a):
 b=a+a%2
 for c in b-1,b:
  print unichr(19903+c),c

(4 dank @ Sherlock9 gespeichert)

Beispiel für Ein- und Ausgabe:

>>> t(1)
䷀ 1
䷁ 2
>>> t(14)
䷌ 13
䷍ 14

1
Ich denke, Sie können 4 Bytes mitb=a+a%2
Sherlock9

Das ist eine Lücke: Es gibt keinen Binärrechner!
F. Hauri

@ F.Hauri: Es heißt nicht, dass es überhaupt einen in der Frage geben muss.
Deusovi

@Deusovi (1) Im Titel, (2) in der ersten Zeile der Anfrage, (3) Zumindest verstößt es gegen die vierte Regel : 1st has to be taken from this map!
F. Hauri

1
@F: Sie sagen, das Ziel ist es, das Paar zu berechnen, aber dann müssen Sie nur die Hexagrammpaare ausgeben. Die 'Tabelle' ist in Unicode anstatt in eine Textdatei integriert - was ist daran falsch?
Deusovi

3

Python 2, 252 245 244

Jetzt inklusive binärer Berechnung (8 Zeichen dank @ Sherlock9 sparen):

d='?":\x10;8/\x08&0%\x01\'!\x12\x0e\x0f\x05+\n1>\x06\x16.$\x0b,\x1b\x133*'
k=lambda l:'\n'.join("{:06b}".format(l)).replace('1',u'▄▄▄▄▄▄▄').replace('0',u'▄▄▄ ▄▄▄')
def t(a):
 j=a+a%2-1;m=ord(d[j/2]);b=k(m);r=b[::-1];print b,j,'\n\n',r if r!=b else k(63-m),j+1

Beispiel für Ein- und Ausgabe:

>>> t(1)
▄▄▄▄▄▄▄
▄▄▄▄▄▄▄
▄▄▄▄▄▄▄
▄▄▄▄▄▄▄
▄▄▄▄▄▄▄
▄▄▄▄▄▄▄ 1 

▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄ 2
>>> t(3)
▄▄▄▄▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄▄▄▄▄
▄▄▄ ▄▄▄ 3 

▄▄▄ ▄▄▄
▄▄▄▄▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄ ▄▄▄
▄▄▄▄▄▄▄ 4

1
Sie können ändern , j=a+a%2-1zu j=a-1, da Sie Integer - Division verwenden, aber Sie verwenden müssen j+1und j+2am Ende in der print - Anweisung. Das spart Ihnen immer noch 2 Bytes. Wenn Sie außerdem m=ord(d[j/2]);und man den beiden von Ihnen aufgerufenen Stellen verwenden, k()werden 6 Byte eingespart. Auch ist die erste 0in "{0:06b}".format(l)unbedingt notwendig? Wenn nicht, ist das ein weiteres Byte. Wenn Sie zu Python 3 wechseln, können Sie das us vor entfernen ▄▄▄▄▄▄▄, aber für den Druck sind Klammern erforderlich, sodass dies nur noch ein Byte ist. Ich werde Sie über alles auf dem Laufenden halten, was ich mir ausgedacht habe.
Sherlock9

Leider kann ich nicht ändern j=a+a%2-1, j=a-1da es die Paare 13 und 14 ausgeben soll, wenn ich 14 eingebe. Vielen Dank für Ihre Vorschläge
Willem

Ah, du hast recht. Ich habe übrigens Probleme, diesen Code in Ideone auszuführen. Kannst du dir das mal ansehen? ideone.com/GdWu4e
Sherlock9

@ Sherlock9 Ideone scheint Probleme mit den Unicode-Zeichen ideone.com/FeK1rK
Willem

1
Ah danke. Um ein weiteres Byte zu speichern, würde ich schreiben def t(a):j=a+a%2-1;etc.. Setzen Sie alles im Wesentlichen in eine Zeile. Und Sie können schreiben k=lambda l:, um ein weiteres Byte zu speichern.
Sherlock9

2

Pure Bash 252

u=(▅▅▅{' ',▅}▅▅▅);m=_yWgXUL8CMB1Dxief5HaN@6mKAbIrjPG;s=$[($1-1)/2];r=$[64#${m:s:1}];for i in {0..5};do echo ${u[(r>>i)&1]} ${u[((r>>5)%2==r%2)&((r>>4)%2==(r>>1)%2)&((r>>3)%2==(r>>2)%2)?1^(r>>i)&1:(r>>(5-i))&1]};done;echo $[s*2+1] $[s*2+2]

mit 2 weiteren Zeilenumbrüchen:

u=(▅▅▅{' ',▅}▅▅▅);m=_yWgXUL8CMB1Dxief5HaN@6mKAbIrjPG;s=$[($1-1)/2];r=$[64#${m:s
:1}];for i in {0..5};do echo ${u[(r>>i)&1]} ${u[((r>>5)%2==r%2)&((r>>4)%2==(r>>
1)%2)&((r>>3)%2==(r>>2)%2)?1^(r>>i)&1:(r>>(5-i))&1]};done;echo $[s*2+1] $[s*2+2]

Tests:

for k in 1 15 28 34;do set -- $k;echo request: $k;
u=(▅▅▅{' ',▅}▅▅▅);m=_yWgXUL8CMB1Dxief5HaN@6mKAbIrjPG;s=$[($1-1)/2];r=$[64#${m:s
:1}];for i in {0..5};do echo ${u[(r>>i)&1]} ${u[((r>>5)%2==r%2)&((r>>4)%2==(r>>
1)%2)&((r>>3)%2==(r>>2)%2)?1^(r>>i)&1:(r>>(5-i))&1]};done;echo $[s*2+1] $[s*2+2]
done;echo $[s*2+1] $[s*2+2]; done
request: 1
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
1 2
request: 15
▅▅▅ ▅▅▅ ▅▅▅ ▅▅▅
▅▅▅ ▅▅▅ ▅▅▅ ▅▅▅
▅▅▅ ▅▅▅ ▅▅▅▅▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅ ▅▅▅ ▅▅▅ ▅▅▅
▅▅▅ ▅▅▅ ▅▅▅ ▅▅▅
15 16
request: 28
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅ ▅▅▅ ▅▅▅▅▅▅▅
▅▅▅ ▅▅▅ ▅▅▅▅▅▅▅
▅▅▅ ▅▅▅ ▅▅▅▅▅▅▅
▅▅▅ ▅▅▅ ▅▅▅▅▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
27 28
request: 34
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅▅▅▅▅ ▅▅▅ ▅▅▅
▅▅▅▅▅▅▅ ▅▅▅▅▅▅▅
▅▅▅▅▅▅▅ ▅▅▅▅▅▅▅
▅▅▅ ▅▅▅ ▅▅▅▅▅▅▅
▅▅▅ ▅▅▅ ▅▅▅▅▅▅▅
33 34
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.