Die Bernoulli-Zahlen (insbesondere die zweiten Bernoulli-Zahlen) werden durch die folgende rekursive Definition definiert:
Wobei eine Kombination bezeichnet .
Geben Sie bei einer nichtnegativen Ganzzahl m
als Eingabe die Dezimaldarstellung ODER einen reduzierten Bruch für die m
zweite Bernoulli-Zahl aus. Wenn Sie eine Dezimaldarstellung ausgeben, müssen Sie eine Genauigkeit von mindestens 6 Dezimalstellen (Nachkommastellen) haben und auf 6 Dezimalstellen gerundet genau sein. Zum Beispiel für m = 2
, 0.166666523
akzeptabel ist , weil es rundet auf 0.166667
. 0.166666389
ist nicht akzeptabel, weil es auf rundet 0.166666
. Nachgestellte Nullen können weggelassen werden. Für Dezimaldarstellungen kann die wissenschaftliche Notation verwendet werden.
Hier ist die Eingabe und die erwartete Ausgabe für m
bis zu einschließlich 60, in wissenschaftlicher Notation auf 6 Dezimalstellen gerundet und als reduzierte Brüche:
0 -> 1.000000e+00 (1/1)
1 -> 5.000000e-01 (1/2)
2 -> 1.666667e-01 (1/6)
3 -> 0.000000e+00 (0/1)
4 -> -3.333333e-02 (-1/30)
5 -> 0.000000e+00 (0/1)
6 -> 2.380952e-02 (1/42)
7 -> 0.000000e+00 (0/1)
8 -> -3.333333e-02 (-1/30)
9 -> 0.000000e+00 (0/1)
10 -> 7.575758e-02 (5/66)
11 -> 0.000000e+00 (0/1)
12 -> -2.531136e-01 (-691/2730)
13 -> 0.000000e+00 (0/1)
14 -> 1.166667e+00 (7/6)
15 -> 0.000000e+00 (0/1)
16 -> -7.092157e+00 (-3617/510)
17 -> 0.000000e+00 (0/1)
18 -> 5.497118e+01 (43867/798)
19 -> 0.000000e+00 (0/1)
20 -> -5.291242e+02 (-174611/330)
21 -> 0.000000e+00 (0/1)
22 -> 6.192123e+03 (854513/138)
23 -> 0.000000e+00 (0/1)
24 -> -8.658025e+04 (-236364091/2730)
25 -> 0.000000e+00 (0/1)
26 -> 1.425517e+06 (8553103/6)
27 -> 0.000000e+00 (0/1)
28 -> -2.729823e+07 (-23749461029/870)
29 -> 0.000000e+00 (0/1)
30 -> 6.015809e+08 (8615841276005/14322)
31 -> 0.000000e+00 (0/1)
32 -> -1.511632e+10 (-7709321041217/510)
33 -> 0.000000e+00 (0/1)
34 -> 4.296146e+11 (2577687858367/6)
35 -> 0.000000e+00 (0/1)
36 -> -1.371166e+13 (-26315271553053477373/1919190)
37 -> 0.000000e+00 (0/1)
38 -> 4.883323e+14 (2929993913841559/6)
39 -> 0.000000e+00 (0/1)
40 -> -1.929658e+16 (-261082718496449122051/13530)
41 -> 0.000000e+00 (0/1)
42 -> 8.416930e+17 (1520097643918070802691/1806)
43 -> 0.000000e+00 (0/1)
44 -> -4.033807e+19 (-27833269579301024235023/690)
45 -> 0.000000e+00 (0/1)
46 -> 2.115075e+21 (596451111593912163277961/282)
47 -> 0.000000e+00 (0/1)
48 -> -1.208663e+23 (-5609403368997817686249127547/46410)
49 -> 0.000000e+00 (0/1)
50 -> 7.500867e+24 (495057205241079648212477525/66)
51 -> 0.000000e+00 (0/1)
52 -> -5.038778e+26 (-801165718135489957347924991853/1590)
53 -> 0.000000e+00 (0/1)
54 -> 3.652878e+28 (29149963634884862421418123812691/798)
55 -> 0.000000e+00 (0/1)
56 -> -2.849877e+30 (-2479392929313226753685415739663229/870)
57 -> 0.000000e+00 (0/1)
58 -> 2.386543e+32 (84483613348880041862046775994036021/354)
59 -> 0.000000e+00 (0/1)
60 -> -2.139995e+34 (-1215233140483755572040304994079820246041491/56786730)
Referenzimplementierung (in Python 3):
def factorial(n):
if n < 1:
return 1
else:
return n * factorial(n - 1)
def combination(m,k):
if k <= m:
return factorial(m)/(factorial(k) * factorial(m - k))
else:
return 0
def Bernoulli(m):
if m == 0:
return 1
else:
t = 0
for k in range(0, m):
t += combination(m, k) * Bernoulli(k) / (m - k + 1)
return 1 - t
Regeln
- Das ist Code-Golf , also gewinnt der kürzeste Code in Bytes
- Sie dürfen keine integrierten oder in einer externen Bibliothek enthaltenen Funktionen verwenden, die entweder einen Bernoulli-Zahlentyp oder ein Bernoulli-Polynom berechnen.
- Ihre Antwort muss für alle Eingaben bis einschließlich 60 die richtige Ausgabe ergeben.
Bestenliste
Das Stapel-Snippet am Ende dieses Beitrags generiert die Rangliste aus den Antworten a) als Liste der kürzesten Lösungen pro Sprache und b) als Gesamtrangliste.
Um sicherzustellen, dass Ihre Antwort angezeigt wird, beginnen Sie Ihre Antwort mit einer Überschrift. Verwenden Sie dazu die folgende Markdown-Vorlage:
## Language Name, N bytes
Wo N
ist die Größe Ihres Beitrags? Wenn Sie Ihren Score zu verbessern, Sie können alte Rechnungen in der Überschrift halten, indem man sich durch das Anschlagen. Zum Beispiel:
## Ruby, <s>104</s> <s>101</s> 96 bytes
Wenn Sie mehrere Zahlen in Ihre Kopfzeile aufnehmen möchten (z. B. weil Ihre Punktzahl die Summe von zwei Dateien ist oder wenn Sie die Strafen für Interpreter-Flags separat auflisten möchten), stellen Sie sicher, dass die tatsächliche Punktzahl die letzte Zahl in der Kopfzeile ist:
## Perl, 43 + 2 (-p flag) = 45 bytes
Sie können den Namen der Sprache auch als Link festlegen, der dann im Snippet angezeigt wird:
## [><>](http://esolangs.org/wiki/Fish), 121 bytes