C #, 604 Bytes
Komplettes Programm, akzeptiert Eingaben (zeilenbegrenztes Layout, keine Bemaßungen) von STDIN, gibt an STDOUT aus.
using C=System.Console;class P{static void Main(){int w=0,W,i,j,t,k,l,c;string D="",L;for(;(L=C.ReadLine())!=null;D+=L)w=L.Length;var R=new[]{-1,0,1,w,-w};L="X";for(W=i=D.Length;i-->0;){var M=new int[W];for(k=j=i;i>0;){M[j]=++k;t=j+R[c=D[j]%5];if(t<0|t>=W|c<3&t/w!=j/w|c>2&t%w!=j%w)break;j=t;if((l=M[j])>0){var J=new int[W+1];System.Func<int,int>B=null,A=s=>J[s]<0?0:J[k=B(s)]=k==W?k:i;B=x=>J[x]==x?x:B(J[x]);for(i=J[W]=W;i>0;)J[--i]=M[i]<l?i%w<1|i%w>w-2|i<w|i>W-w?W:i:-1;for(;i<W;)if(J[++i]<0)l=D[i]%5/2-1;else{A(i-1);if(i>w)A(i-w);}for(c=W;i-->0;L=""+(c>2?c:0)*l)c-=J[i]<0?0:B(i)/W;}}}C.WriteLine(L);}}
Das Programm arbeitet nach dem ersten Lesung im Layout, unnötig zu sagen, und dann jede Zelle iterieren. Wir lassen dann eine "Schlange" aus jeder Zelle laufen, die den Pfeilen folgt, bis sie vom Rand abläuft oder in sich selbst hineinläuft. Wenn es in sich zusammenläuft, wissen wir, dass wir eine Schleife (oder eines dieser "> <" Dinge) gefunden haben, und es weiß auch, wie viel von der Schlange in der Schleife ist.
Sobald wir wissen, dass wir eine Schleife haben, wissen wir, welche Zellen sich in der Schleife befinden, und erstellen eine Zuordnung von jeder Zelle (aus Gründen +1) zu sich selbst -1
(bedeutet, dass sie sich in der Schleife befindet) oder W
(über die gesamte Breite). wenn es auf den Rand (oder die + 1 (die am Index ist W
) zu vereinfachen , die Dinge weiter eins).
Während wir dies tun, finden wir auch die Richtung, die das 'letzte' Element der Schleife hat (dh das letzte Element der Schleife in der letzten Zeile, die Elemente aus der Schleife enthält). Dieses Element muss ein "<" oder ein "^" sein und gibt die Taktung (CW / CCW) der Schleife an (übersetzt in -1 / + 1).
Wir führen dann einen Disjoin Set Pass durch, der alle Elemente, die sich außerhalb der Schleife befinden, dem zuordnet W
Set . Wir subtrahieren dann, wie viele davon vorhanden sind W
, um die auf und in der Schleife enthaltene Zahl zu erhalten. Wenn diese Zahl kleiner als 3 ist, ersetzen wir sie durch 0. Wir multiplizieren dies mit der Taktung, stellen sie als Ergebnis ein und entkommen irgendwie den for-Schleifen, in denen das Ergebnis ausgegeben wird.
Wenn jedoch das meiste der oben genannten Ereignisse nie eintritt (weil sich nie eine Schlange findet), bleibt das Ergebnis als "X" und das wird ausgegeben.
using C=System.Console;
class P
{
static void Main()
{
int w=0, // width
W, // full length
i, // used for iterating over all the cells
j, // keeps track of where the snake as got to
t, // t is next j
k, // how far along the snake we are, kind of
// later on, k is used as temp for A
l, // stores a threshold for how far along the snake the loop starts
// later on, l stores the last seen pointer - this tells us the clockness
c; // the translated direction
// later on, c is a backwards-count
string D="", // D is the map
L; // used for reading lines, and then storing the result
// might not be the best yay of doing this
for(;(L=C.ReadLine())!=null; // read a line, while we can
D+=L) // add the line to the map
w=L.Length; // record the width
var R=new[]{-1,0,1,w,-w}; // direction table (char%5) - might be able to replace this array with some bit bashing/ternary
L="X"; // can't seem to fit this in anywhere... (don't strictly need to re-use L)
for(W=i=D.Length;i-->0;) // for each cell, we send a 'snake' to try to find the loop from that cell
{
var M=new int[W]; // stores how far along the snake this point is
for(k=j=i; // k's value doesn't really matter, as long as it's not stupidly big
i>0;) // the i>0 check is just for when we return (see comment at the end of the code)
{
M[j]=++k; // store snake point and advance distance
t=j+R[c=D[j]%5]; // t is position after move (translate <>v^ to 0234 (c is direction))
//c=D[j]%5; // translate <>v^ to 0234 (c is direction)
//t=j+R[c]; // t is position after move
if(t<0|t>=W|c<3&t/w!=j/w|c>2&t%w!=j%w)
break; // hit an edge - will always happen if we don't find a loop - give up on this snake
j=t; // move to new position
if((l=M[j])>0) // we've been here before...
{
// disjoint sets (assign all the edges to one set, assign all the ones on the line to another set, do adjacent disjoint, return size-outteredge (minus if necessary)
var J=new int[W+1]; // looks like we can reuse M for this
System.Func<int,int>B=null,
// whatever s points at should point to i, unless s points to W, in which case it should keep point to W
A=s=>J[s]<0?0:J[k=B(s)]=k==W?k:i;
// read the value this points to
B=x=>J[x]==x?x:B(J[x]);
for(i=J[W]=W;i>0;)
J[--i]=M[i]<l? // if we are not part of the loop
i%w<1|i%w>w-2|i<w|i>W-w? // if we are on the edge
W: // on the edge
i: // not on the edge
-1; // this is on the loop
// now fill in
// we don't have to worry about wrapping, the important bit being an un-wrapping closed loop
// i = 0
for(;i<W;)
if(J[++i]<0) // we are on the loop
l=D[i]%5/2-1; // last one must be ^(4) or <(0)
else{ // can probably crush this into an l returning l assigning term (with if above)
A(i-1);
if(i>w)
A(i-w);
}
// now count the number of non-edges
for(c=W; // assume everything is a non-edge
i-->0;
L=""+(c>2?c:0)*l) // set output to be number of non-edges * clockness (or 0 if too few)
c-=J[i]<0?0:B(i)/W; // subtract 1 if an edge (B(i) is W), othewise 0
// at this point, i is 0, so we will fall out of all the loops
}
}
}
C.WriteLine(L); // output result
}
}