Pythagoreische Dreiecke stapeln


23

Hintergrund

Ein pythagoreisches Dreieck ist ein rechtwinkliges Dreieck, bei dem jede Seitenlänge eine ganze Zahl ist (dh, die Seitenlängen bilden ein pythagoreisches Dreifach ):

Pythagoreisches Dreieck

Mit den Seiten dieses Dreiecks können wir zwei weitere nicht kongruente pythagoreische Dreiecke wie folgt anfügen:

Dreieckstapel 1

Wir können mit diesem Muster weitermachen, solange sich keine zwei Dreiecke überlappen und die Verbindungsseiten gleich lang sind:

Bildbeschreibung hier eingeben

Die Frage ist, wie viele nicht kongruente pythagoreische Dreiecke können wir in einen bestimmten Raum einpassen?

Die Eingabe

Sie erhalten zwei Ganzzahlen als Eingabe Wund Hüber Funktionsargumente STDIN, Zeichenfolgen oder was auch immer Sie möchten. Die Ganzzahlen können als Dezimal-, Hexadezimal-, Binär-, Unär- (Viel Glück, Retina ) oder eine beliebige andere Ganzzahlbasis empfangen werden . Sie können das annehmen max(W, H) <= 2^15 - 1.

Die Ausgabe

Ihr Programm oder Ihre Funktion sollte eine Liste nicht überlappender verbundener nicht kongruenter pythagoräischer Dreiecke berechnen und eine Liste mit jeweils drei Koordinatensätzen ausgeben, wobei die Koordinaten in einem Satz eines der pythagoräischen Dreiecke bilden, wenn sie durch Linien verbunden sind. Koordinaten müssen in unserem Raum reelle Zahlen sein ( xmüssen im Intervall liegen [0, W]und ymüssen im Intervall liegen [0, H]), und der Abstand muss maschinengenau sein. Die Reihenfolge der Dreiecke und das genaue Format jeder Koordinate ist nicht wichtig.

Es muss möglich sein, von einem Dreieck zu einem anderen zu "gehen", indem nur verbundene Grenzen überschritten werden.

Unter Verwendung des obigen Diagramm als Beispiel nehmen wir unsere eingegeben werden W = 60, H = 60.

Unsere Ausgabe könnte dann die folgende Liste von Koordinaten sein:

(0, 15), (0, 21), (8, 15)
(0, 21), (14.4, 40.2), (8, 15)
(0, 15), (8, 0), (8, 15)
(8, 0), (8, 15), (28, 15)
(8, 15), (28, 15), (28, 36)
(28, 15), (28, 36), (56, 36)

Nun, 6 Dreiecke sind sicherlich nicht das Beste, was wir in Anbetracht unseres Platzes tun können. Kannst du es besser machen?

Regeln und Wertung

  • Ihre Punktzahl für diese Herausforderung ist die Anzahl der Dreiecke, die Ihr Programm aufgrund der Eingabe von generiert W = 1000, H = 1000. Ich behalte mir das Recht vor, diese Eingabe zu ändern, wenn ich den Verdacht habe, dass jemand diesen Fall fest codiert.

  • Sie dürfen keine eingebauten Funktionen verwenden, die pythagoreische Tripel berechnen, und Sie dürfen keine Liste von mehr als 2 pythagoreischen Tripeln fest codieren (wenn Sie Ihr Programm fest codieren, um immer mit einem (3, 4, 5) Dreieck oder einem ähnlichen Ausgangsumstand zu beginnen) es ist okay).

  • Sie können Ihren Beitrag in jeder Sprache verfassen. Lesbarkeit und Kommentierung sind erwünscht.

  • Eine Liste pythagoreischer Tripel finden Sie hier .

  • Standard-Regelungslücken sind nicht zulässig.


Können wir mehr als eine Instanz desselben Dreiecks im Raum verwenden?
DavidC

1
@DavidCarraher Es dürfen keine zwei von Ihrem Programm erzeugten Dreiecke zueinander kongruent sein.
BrainSteel,


Dieses Problem erfordert viel Berechnung, nicht wahr? Zumal dies ein Packproblem ist.
Renae Lider

1
@ KeithRandall Sie sind ähnlich, nicht kongruent.
Geobits

Antworten:


16

Python 3, 109

Dies war sicherlich eine täuschend schwere Herausforderung. Es gab viele Male das Schreiben des Codes, bei denen ich meine grundlegenden Geometriefähigkeiten in Frage stellte. Trotzdem bin ich ziemlich zufrieden mit dem Ergebnis. Ich habe mir keine Mühe gegeben, einen komplexen Algorithmus zum Platzieren der Dreiecke zu entwickeln, und stattdessen ist mein Code nur durch das Platzieren des kleinsten Fehlers fehlerhaft, den er finden kann. Ich hoffe, dass ich dies später verbessern kann, oder meine Antwort wird andere davon abhalten, einen besseren Algorithmus zu finden! Alles in allem ein sehr lustiges Problem und es entstehen einige interessante Bilder.

Hier ist der Code:

import time
import math

W = int(input("Enter W: "))
H = int(input("Enter H: "))

middle_x = math.floor(W/2)
middle_y = math.floor(H/2)

sides = [ # each side is in the format [length, [x0, y0], [x1, y1]]
    [3,[middle_x,middle_y],[middle_x+3,middle_y]],
    [4,[middle_x,middle_y],[middle_x,middle_y+4]],
    [5,[middle_x+3,middle_y],[middle_x,middle_y+4]]
    ]

triangles = [[0,1,2]] # each triangle is in the format [a, b, c] where a, b and c are the indexes of sides

used_triangles = [[3,4,5]] # a list of used Pythagorean triples, where lengths are ordered (a < b < c)

max_bounds_length = math.sqrt(W**2 + H**2)

def check_if_pyth_triple(a,b): # accepts two lists of the form [l, [x0,y0], [x1,y1]] defining two line segments
    # returns 0 if there are no triples, 1 if there is a triple with a right angle on a,
    # and 2 if there is a triple with the right angle opposite a
    c = math.sqrt(a[0]**2 + b[0]**2)
    if c.is_integer():
        if not sorted([a[0], b[0], c]) in used_triangles:
            return 1
        return 0
    else:
        if a[0] > b[0]:
            c = math.sqrt(a[0]**2 - b[0]**2)
            if c.is_integer() and not sorted([a[0], b[0], c]) in used_triangles:
                return 2
        return 0

def check_if_out_of_bounds(p):
    out = False
    if p[0] < 0 or p[0] > W:
        out = True
    if p[1] < 0 or p[1] > H:
        out = True
    return out

def in_between(a,b,c):
    maxi = max(a,c)
    mini = min(a,c)
    return mini < b < maxi

def sides_intersect(AB,CD): # accepts two lists of the form [l, [x0,y0], [x1,y1]] defining two line segments
    # doesn't count overlapping lines
    A = AB[1]
    B = AB[2]
    C = CD[1]
    D = CD[2]

    if A[0] == B[0]: # AB is vertical
        if C[0] == D[0]: # CD is vertical
            return False
        else:
            m1 = (C[1] - D[1])/(C[0] - D[0]) # slope of CD
            y = m1*(A[0] - C[0]) + C[1] # the y value of CD at AB's x value
            return in_between(A[1], y, B[1]) and in_between(C[0], A[0], D[0])
    else:
        m0 = (A[1] - B[1])/(A[0] - B[0]) # slope of AB
        if C[0] == D[0]: # CD is vertical
            y = m0*(C[0] - A[0]) + A[1] # the y value of CD at AB's x value
            return in_between(C[1], y, D[1]) and in_between(A[0],C[0],B[0])
        else:
            m1 = (C[1] - D[1])/(C[0] - D[0]) # slope of CD
            if m0 == m1:
                return False
            else:
                x = (m0*A[0] - m1*C[0] - A[1] + C[1])/(m0 - m1)
                return in_between(A[0], x, B[0]) and in_between(C[0], x, D[0])

def check_all_sides(b,triangle):
    no_intersections = True
    for side in sides:
        if sides_intersect(side, b):
            no_intersections = False
            break

    return no_intersections

def check_point_still_has_room(A): # This function is needed for the weird case when all 2pi degrees
    # around a point are filled by triangles, but you could fit in a small triangle into another one
    # already built around the point. Doing this won't cause sides_intersect() to detect it because
    # the sides will all be parallel. Crazy stuff.
    connecting_sides = []
    for side in sides:
        if A in side:
            connecting_sides.append(side)

    match_count = 0
    slopes = []
    for side in connecting_sides:
        B = side[1]
        if A == B:
            B = side[2]
        if not A[0] == B[0]:
            slope = round((A[1]-B[1])/(A[0]-B[0]),4)
        else:
            if A[1] < B[1]:
                slope = "infinity"
            else:
                slope = "neg_infinity"
        if slope in slopes:
            match_count -= 1
        else:
            slopes.append(slope)
            match_count += 1

    return match_count != 0

def construct_b(a,b,pyth_triple_info,straight_b_direction,bent_b_direction):
    # this function finds the correct third point of the triangle given a and the length of b
    # pyth_triple_info determines if a is a leg or the hypotenuse
    # the b_directions determine on which side of a the triangle should be formed
    a_p = 2 # this is the index of the point in a that is not the shared point with b
    if a[1] != b[1]:
        a_p = 1

    vx = a[a_p][0] - b[1][0] # v is our vector, and these are the coordinates, adjusted so that
    vy = a[a_p][1] - b[1][1] # the shared point is the origin

    if pyth_triple_info == 1:
        # because the dot product of orthogonal vectors is zero, we can use that and the Pythagorean formula
        # to get this simple formula for generating the coordinates of b's second point
        if vy == 0:
            x = 0
            y = b[0]
        else:
            x = b[0]/math.sqrt(1+((-vx/vy)**2)) # b[0] is the desired length
            y = -vx*x/vy

        x = x*straight_b_direction # since the vector is orthagonal, if we want to reverse the direction,
        y = y*straight_b_direction # it just means finding the mirror point

    elif pyth_triple_info == 2: # this finds the intersection of the two circles of radii b[0] and c 
        # around a's endpoints, which is the third point of the triangle if a is the hypotenuse
        c = math.sqrt(a[0]**2 - b[0]**2)
        D = a[0]
        A = (b[0]**2 - c**2 + D**2 ) / (2*D)
        h = math.sqrt(b[0]**2 - A**2)
        x2 = vx*(A/D)
        y2 = vy*(A/D)        
        x = x2 + h*vy/D
        y = y2 - h*vx/D

        if bent_b_direction == -1: # this constitutes reflection of the vector (-x,-y) around the normal vector n,
            # which accounts for finding the triangle on the opposite side of a
            dx = -x
            dy = -y
            v_length = math.sqrt(vx**2 + vy**2)
            nx = vx/v_length
            ny = vy/v_length

            d_dot_n = dx*nx + dy*ny

            x = dx - 2*d_dot_n*nx
            y = dy - 2*d_dot_n*ny

    x = x + b[1][0] # adjust back to the original frame
    y = y + b[1][1]

    return [x,y]

def construct_triangle(side_index):
    a = sides[side_index] # a is the base of the triangle
    a_p = 1
    b = [1, a[a_p], []] # side b, c is hypotenuse

    for index, triangle in enumerate(triangles):
        if side_index in triangle:
            triangle_index = index
            break

    triangle = list(triangles[triangle_index])
    triangle.remove(side_index)

    add_tri = False

    straight_b = construct_b(a,b,1,1,1)

    bent_b = construct_b(a,b,2,1,1)

    A = sides[triangle[0]][1]
    if A in a:
        A = sides[triangle[0]][2]

    Ax = A[0] - b[1][0] # adjusting A so that it's a vector
    Ay = A[1] - b[1][1]

    # these are for determining if construct_b() is going to the correct side
    triangle_on_side = (a[2][0]-a[1][0])*(A[1]-a[1][1]) - (a[2][1]-a[1][1])*(A[0]-a[1][0])
    straight_b_on_side = (a[2][0]-a[1][0])*(straight_b[1]-a[1][1]) - (a[2][1]-a[1][1])*(straight_b[0]-a[1][0])
    bent_b_on_side = (a[2][0]-a[1][0])*(bent_b[1]-a[1][1]) - (a[2][1]-a[1][1])*(bent_b[0]-a[1][0])

    straight_b_direction = 1
    if (triangle_on_side > 0 and straight_b_on_side > 0) or (triangle_on_side < 0 and straight_b_on_side < 0):
        straight_b_direction = -1

    bent_b_direction = 1
    if (triangle_on_side > 0 and bent_b_on_side > 0) or (triangle_on_side < 0 and bent_b_on_side < 0):
        bent_b_direction = -1


    a_ps = []
    for x in [1,2]:
        if check_point_still_has_room(a[x]): # here we check for that weird exception
            a_ps.append(x)

    while True:
        out_of_bounds = False
        if b[0] > max_bounds_length:
            break

        pyth_triple_info = check_if_pyth_triple(a,b)

        for a_p in a_ps:
            if a_p == 1: # this accounts for the change in direction when switching a's points
                new_bent_b_direction = bent_b_direction
            else:
                new_bent_b_direction = -bent_b_direction

            b[1] = a[a_p]
            if pyth_triple_info > 0:
                b[2] = construct_b(a,b,pyth_triple_info,straight_b_direction,new_bent_b_direction)

                if check_if_out_of_bounds(b[2]): # here is the check to make sure we don't go out of bounds
                    out_of_bounds = True
                    break

                if check_all_sides(b,triangle):
                    if pyth_triple_info == 1:
                        c = [math.sqrt(a[0]**2 + b[0]**2), a[3-a_p], b[2]]
                    else:
                        c = [math.sqrt(a[0]**2 - b[0]**2), a[3-a_p], b[2]]

                    if check_all_sides(c,triangle):
                        add_tri = True
                        break

        if out_of_bounds or add_tri:
            break

        b[0] += 1 # increment the length of b every time the loop goes through

    if add_tri: # this adds a new triangle
        sides.append(b)
        sides.append(c)
        sides_len = len(sides)
        triangles.append([side_index, sides_len - 2, sides_len - 1])
        used_triangles.append(sorted([a[0], b[0], c[0]])) # so we don't use the same triangle again

def build_all_triangles(): # this iterates through every side to see if a new triangle can be constructed
    # this is probably where real optimization would take place so more optimal triangles are placed first
    t0 = time.clock()

    index = 0
    while index < len(sides):
        construct_triangle(index)
        index += 1

    t1 = time.clock()

    triangles_points = [] # this is all for printing points
    for triangle in triangles:
        point_list = []
        for x in [1,2]:
            for side_index in triangle:
                point = sides[side_index][x]
                if not point in point_list:
                    point_list.append(point)
        triangles_points.append(point_list)

    for triangle in triangles_points:
        print(triangle)

    print(len(triangles), "triangles placed in", round(t1-t0,3), "seconds.")

def matplotlib_graph(): # this displays the triangles with matplotlib
    import pylab as pl
    import matplotlib.pyplot as plt
    from matplotlib import collections as mc

    lines = []
    for side in sides:
        lines.append([side[1],side[2]])

    lc = mc.LineCollection(lines)
    fig, ax = pl.subplots()
    ax.add_collection(lc)
    ax.autoscale()
    ax.margins(0.1)
    plt.show()

build_all_triangles()

Hier ist ein Diagramm der Ausgabe für W = 1000und H = 1000mit 109 Dreiecken: Diagramm der Dreiecke gezeichnet mit matplotlib

Hier ist W = 10000und H = 10000mit 724 Dreiecken: Diagramm der Dreiecke gezeichnet mit matplotlib

Rufen Sie die matplotlib_graph()Funktion nach build_all_triangles()auf, um die Dreiecke grafisch darzustellen.

Ich denke, der Code läuft einigermaßen schnell: bei W = 1000und H = 1000es dauert 0,66 Sekunden und bei W = 10000und H = 10000es dauert 45 Sekunden mit meinem beschissenen Laptop.


Ich muss meine Lösung wirklich fertig stellen. Ich war vor ein paar Wochen ziemlich weit weg, bin aber nie dazu gekommen, es fertigzustellen. Es ist in der Tat ziemlich viel Arbeit! Vor allem mit den Kreuzungstests und damit, dass sie in entarteten Fällen richtig funktionieren. Ich denke, ich weiß, welchen Ansatz ich dafür verwenden möchte, aber es ist der Teil, den ich noch nicht abgeschlossen habe.
Reto Koradi

1
Wow, das ist eine exzellente erste Lösung! Die Grafiken gefallen mir besonders gut. Ich bin froh, dass du diese Herausforderung genossen hast und ich hoffe, dass du bei PPCG bleibst!
BrainSteel

Das ist wahrscheinlich das chaotischste Bild, das ich je gesehen habe
Beta Decay

16

C ++, 146 Dreiecke (Teil 1/2)

Ergebnis als Bild

Ergebnis

Algorithmus Beschreibung

Dies verwendet eine Breitensuche des Lösungsraums. In jedem Schritt werden alle eindeutigen Konfigurationen von kDreiecken erstellt, die in die Box passen, und alle eindeutigen Konfigurationen von k + 1Dreiecken erstellt, indem alle Optionen zum Hinzufügen eines nicht verwendeten Dreiecks zu einer der Konfigurationen aufgelistet werden.

Der Algorithmus ist grundsätzlich so eingestellt, dass er das absolute Maximum mit einem erschöpfenden BFS ermittelt. Und das erfolgreich für kleinere Größen. Beispielsweise wird für eine Box mit 50 x 50 das Maximum in etwa 1 Minute ermittelt. Für 1000x1000 ist der Lösungsraum jedoch viel zu groß. Damit es beendet werden kann, schneide ich die Liste der Lösungen nach jedem Schritt ab. Die Anzahl der Lösungen, die beibehalten werden, wird durch ein Befehlszeilenargument angegeben. Für die obige Lösung wurde ein Wert von 50 verwendet. Dies führte zu einer Laufzeit von ca. 10 Minuten.

Der Umriss der Hauptschritte sieht folgendermaßen aus:

  1. Generieren Sie alle pythagoreischen Dreiecke, die möglicherweise in die Box passen.
  2. Generieren Sie das anfängliche Lösungsset, das aus Lösungen mit jeweils 1 Dreieck besteht.
  3. Schleife über Generationen (Dreieckszahl).
    1. Beseitigen Sie ungültige Lösungen aus dem Lösungssatz. Dies sind Lösungen, die entweder nicht in die Box passen oder überlappen.
    2. Wenn der Lösungssatz leer ist, sind wir fertig. Das Lösungsset der Vorgängergeneration enthält die Maxima.
    3. Die Zuschnittslösung wurde auf die angegebene Größe eingestellt, wenn die Zuschnittoption aktiviert war.
    4. Durchlaufen Sie alle Lösungen der aktuellen Generation.
      1. Alle Seiten im Umfang der Lösung umschlingen.
        1. Finden Sie alle Dreiecke, deren Seitenlänge mit der Umfangsseite übereinstimmt und die noch nicht in der Lösung enthalten sind.
        2. Generieren Sie die neuen Lösungen, die sich aus dem Hinzufügen der Dreiecke ergeben, und fügen Sie die Lösungen zum Lösungssatz der neuen Generation hinzu.
  4. Drucklösungen.

Ein kritischer Aspekt des gesamten Schemas ist, dass Konfigurationen im Allgemeinen mehrmals generiert werden und wir nur an eindeutigen Konfigurationen interessiert sind. Wir brauchen also einen eindeutigen Schlüssel, der eine Lösung definiert, die unabhängig von der Reihenfolge der Dreiecke sein muss, die beim Generieren der Lösung verwendet werden. Zum Beispiel würde die Verwendung von Koordinaten für den Schlüssel überhaupt nicht funktionieren, da sie völlig unterschiedlich sein können, wenn wir in mehreren Aufträgen zu derselben Lösung gelangen. Was ich verwendet habe, ist die Menge der Dreiecksindizes in der globalen Liste sowie eine Menge von "Verbinder" -Objekten, die definieren, wie die Dreiecke verbunden sind. Der Schlüssel codiert also nur die Topologie, unabhängig von der Konstruktionsreihenfolge und Position im 2D-Raum.

Während dies eher ein Implementierungsaspekt ist, entscheidet ein anderer Teil, der nicht ganz trivial ist, ob und wie das Ganze in die vorgegebene Box passt. Wenn Sie die Grenzen wirklich verschieben möchten, ist es offensichtlich erforderlich, dass die Drehung in die Box passt.

Ich werde versuchen, später einige Kommentare zum Code in Teil 2 hinzuzufügen, falls jemand die Details zur Funktionsweise dieses Vorgangs genauer untersuchen möchte.

Ergebnis im offiziellen Textformat

(322.085, 641.587) (318.105, 641.979) (321.791, 638.602)
(318.105, 641.979) (309.998, 633.131) (321.791, 638.602)
(318.105, 641.979) (303.362, 639.211) (309.998, 633.131)
(318.105, 641.979) (301.886, 647.073) (303.362, 639.211)
(301.886, 647.073) (297.465, 638.103) (303.362, 639.211)
(301.886, 647.073) (280.358, 657.682) (297.465, 638.103)
(301.886, 647.073) (283.452, 663.961) (280.358, 657.682)
(301.886, 647.073) (298.195, 666.730) (283.452, 663.961)
(301.886, 647.073) (308.959, 661.425) (298.195, 666.730)
(301.886, 647.073) (335.868, 648.164) (308.959, 661.425)
(335.868, 648.164) (325.012, 669.568) (308.959, 661.425)
(308.959, 661.425) (313.666, 698.124) (298.195, 666.730)
(313.666, 698.124) (293.027, 694.249) (298.195, 666.730)
(313.666, 698.124) (289.336, 713.905) (293.027, 694.249)
(298.195, 666.730) (276.808, 699.343) (283.452, 663.961)
(335.868, 648.164) (353.550, 684.043) (325.012, 669.568)
(303.362, 639.211) (276.341, 609.717) (309.998, 633.131)
(276.808, 699.343) (250.272, 694.360) (283.452, 663.961)
(335.868, 648.164) (362.778, 634.902) (353.550, 684.043)
(362.778, 634.902) (367.483, 682.671) (353.550, 684.043)
(250.272, 694.360) (234.060, 676.664) (283.452, 663.961)
(362.778, 634.902) (382.682, 632.942) (367.483, 682.671)
(382.682, 632.942) (419.979, 644.341) (367.483, 682.671)
(419.979, 644.341) (379.809, 692.873) (367.483, 682.671)
(353.550, 684.043) (326.409, 737.553) (325.012, 669.568)
(353.550, 684.043) (361.864, 731.318) (326.409, 737.553)
(353.550, 684.043) (416.033, 721.791) (361.864, 731.318)
(416.033, 721.791) (385.938, 753.889) (361.864, 731.318)
(385.938, 753.889) (323.561, 772.170) (361.864, 731.318)
(385.938, 753.889) (383.201, 778.739) (323.561, 772.170)
(383.201, 778.739) (381.996, 789.673) (323.561, 772.170)
(323.561, 772.170) (292.922, 743.443) (361.864, 731.318)
(323.561, 772.170) (296.202, 801.350) (292.922, 743.443)
(250.272, 694.360) (182.446, 723.951) (234.060, 676.664)
(335.868, 648.164) (330.951, 570.319) (362.778, 634.902)
(330.951, 570.319) (381.615, 625.619) (362.778, 634.902)
(330.951, 570.319) (375.734, 565.908) (381.615, 625.619)
(330.951, 570.319) (372.989, 538.043) (375.734, 565.908)
(323.561, 772.170) (350.914, 852.648) (296.202, 801.350)
(323.561, 772.170) (362.438, 846.632) (350.914, 852.648)
(234.060, 676.664) (217.123, 610.807) (283.452, 663.961)
(217.123, 610.807) (249.415, 594.893) (283.452, 663.961)
(375.734, 565.908) (438.431, 559.733) (381.615, 625.619)
(382.682, 632.942) (443.362, 567.835) (419.979, 644.341)
(443.362, 567.835) (471.667, 606.601) (419.979, 644.341)
(323.561, 772.170) (393.464, 830.433) (362.438, 846.632)
(372.989, 538.043) (471.272, 556.499) (375.734, 565.908)
(372.989, 538.043) (444.749, 502.679) (471.272, 556.499)
(372.989, 538.043) (365.033, 521.897) (444.749, 502.679)
(443.362, 567.835) (544.353, 553.528) (471.667, 606.601)
(544.353, 553.528) (523.309, 622.384) (471.667, 606.601)
(544.353, 553.528) (606.515, 572.527) (523.309, 622.384)
(419.979, 644.341) (484.688, 697.901) (379.809, 692.873)
(444.749, 502.679) (552.898, 516.272) (471.272, 556.499)
(217.123, 610.807) (170.708, 516.623) (249.415, 594.893)
(484.688, 697.901) (482.006, 753.837) (379.809, 692.873)
(484.688, 697.901) (571.903, 758.147) (482.006, 753.837)
(419.979, 644.341) (535.698, 636.273) (484.688, 697.901)
(276.808, 699.343) (228.126, 812.299) (250.272, 694.360)
(228.126, 812.299) (185.689, 726.188) (250.272, 694.360)
(228.126, 812.299) (192.246, 829.981) (185.689, 726.188)
(393.464, 830.433) (449.003, 936.807) (362.438, 846.632)
(393.464, 830.433) (468.505, 926.625) (449.003, 936.807)
(416.033, 721.791) (471.289, 833.915) (385.938, 753.889)
(471.289, 833.915) (430.252, 852.379) (385.938, 753.889)
(350.914, 852.648) (227.804, 874.300) (296.202, 801.350)
(192.246, 829.981) (114.401, 834.898) (185.689, 726.188)
(114.401, 834.898) (155.433, 715.767) (185.689, 726.188)
(217.123, 610.807) (91.773, 555.523) (170.708, 516.623)
(91.773, 555.523) (141.533, 457.421) (170.708, 516.623)
(141.533, 457.421) (241.996, 407.912) (170.708, 516.623)
(141.533, 457.421) (235.365, 394.457) (241.996, 407.912)
(241.996, 407.912) (219.849, 525.851) (170.708, 516.623)
(241.996, 407.912) (304.896, 419.724) (219.849, 525.851)
(91.773, 555.523) (55.917, 413.995) (141.533, 457.421)
(571.903, 758.147) (476.260, 873.699) (482.006, 753.837)
(571.903, 758.147) (514.819, 890.349) (476.260, 873.699)
(571.903, 758.147) (587.510, 764.886) (514.819, 890.349)
(587.510, 764.886) (537.290, 898.778) (514.819, 890.349)
(587.510, 764.886) (592.254, 896.801) (537.290, 898.778)
(587.510, 764.886) (672.455, 761.831) (592.254, 896.801)
(55.917, 413.995) (113.819, 299.840) (141.533, 457.421)
(113.819, 299.840) (149.275, 293.604) (141.533, 457.421)
(544.353, 553.528) (652.112, 423.339) (606.515, 572.527)
(652.112, 423.339) (698.333, 461.597) (606.515, 572.527)
(535.698, 636.273) (651.250, 731.917) (484.688, 697.901)
(651.250, 731.917) (642.213, 756.296) (484.688, 697.901)
(304.896, 419.724) (299.444, 589.636) (219.849, 525.851)
(304.896, 419.724) (369.108, 452.294) (299.444, 589.636)
(304.896, 419.724) (365.965, 299.326) (369.108, 452.294)
(304.896, 419.724) (269.090, 347.067) (365.965, 299.326)
(114.401, 834.898) (0.942, 795.820) (155.433, 715.767)
(114.401, 834.898) (75.649, 947.412) (0.942, 795.820)
(192.246, 829.981) (124.489, 994.580) (114.401, 834.898)
(269.090, 347.067) (205.435, 217.901) (365.965, 299.326)
(205.435, 217.901) (214.030, 200.956) (365.965, 299.326)
(182.446, 723.951) (68.958, 600.078) (234.060, 676.664)
(182.446, 723.951) (32.828, 633.179) (68.958, 600.078)
(652.112, 423.339) (763.695, 288.528) (698.333, 461.597)
(763.695, 288.528) (808.220, 324.117) (698.333, 461.597)
(763.695, 288.528) (811.147, 229.162) (808.220, 324.117)
(652.112, 423.339) (627.572, 321.247) (763.695, 288.528)
(627.572, 321.247) (660.872, 244.129) (763.695, 288.528)
(652.112, 423.339) (530.342, 344.618) (627.572, 321.247)
(652.112, 423.339) (570.488, 453.449) (530.342, 344.618)
(627.572, 321.247) (503.633, 267.730) (660.872, 244.129)
(365.965, 299.326) (473.086, 450.157) (369.108, 452.294)
(365.965, 299.326) (506.922, 344.440) (473.086, 450.157)
(365.965, 299.326) (394.633, 260.827) (506.922, 344.440)
(394.633, 260.827) (537.381, 303.535) (506.922, 344.440)
(811.147, 229.162) (979.067, 234.338) (808.220, 324.117)
(698.333, 461.597) (706.660, 655.418) (606.515, 572.527)
(811.147, 229.162) (982.117, 135.385) (979.067, 234.338)
(982.117, 135.385) (999.058, 234.954) (979.067, 234.338)
(365.965, 299.326) (214.375, 186.448) (394.633, 260.827)
(811.147, 229.162) (803.145, 154.590) (982.117, 135.385)
(803.145, 154.590) (978.596, 102.573) (982.117, 135.385)
(214.375, 186.448) (314.969, 126.701) (394.633, 260.827)
(314.969, 126.701) (508.984, 192.909) (394.633, 260.827)
(314.969, 126.701) (338.497, 88.341) (508.984, 192.909)
(338.497, 88.341) (523.725, 138.884) (508.984, 192.909)
(338.497, 88.341) (359.556, 11.163) (523.725, 138.884)
(808.220, 324.117) (801.442, 544.012) (698.333, 461.597)
(801.442, 544.012) (739.631, 621.345) (698.333, 461.597)
(660.872, 244.129) (732.227, 78.877) (763.695, 288.528)
(660.872, 244.129) (644.092, 40.821) (732.227, 78.877)
(808.220, 324.117) (822.432, 544.659) (801.442, 544.012)
(660.872, 244.129) (559.380, 47.812) (644.092, 40.821)
(660.872, 244.129) (556.880, 242.796) (559.380, 47.812)
(556.880, 242.796) (528.882, 242.437) (559.380, 47.812)
(808.220, 324.117) (924.831, 449.189) (822.432, 544.659)
(924.831, 449.189) (922.677, 652.177) (822.432, 544.659)
(922.677, 652.177) (779.319, 785.836) (822.432, 544.659)
(779.319, 785.836) (696.630, 771.054) (822.432, 544.659)
(779.319, 785.836) (746.412, 969.918) (696.630, 771.054)
(779.319, 785.836) (848.467, 840.265) (746.412, 969.918)
(848.467, 840.265) (889.327, 872.428) (746.412, 969.918)
(746.412, 969.918) (619.097, 866.541) (696.630, 771.054)
(779.319, 785.836) (993.200, 656.395) (848.467, 840.265)
(993.200, 656.395) (935.157, 864.450) (848.467, 840.265)
(993.200, 656.395) (995.840, 881.379) (935.157, 864.450)
(338.497, 88.341) (34.607, 5.420) (359.556, 11.163)
(338.497, 88.341) (189.294, 204.357) (34.607, 5.420)
(189.294, 204.357) (158.507, 228.296) (34.607, 5.420)
(158.507, 228.296) (38.525, 230.386) (34.607, 5.420)
(158.507, 228.296) (41.694, 412.358) (38.525, 230.386)

Code

Siehe Teil 2 für den Code. Dies wurde in zwei Teile aufgeteilt, um die Größenbeschränkungen der Pfosten zu umgehen.

Der Code ist auch in PasteBin verfügbar .


8

C ++, 146 Dreiecke (Teil 2/2)

Fortsetzung von Teil 1. Dies wurde in zwei Teile aufgeteilt, um die Post-Größenbeschränkungen zu umgehen.

Code

Kommentare hinzugefügt werden.

#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <sstream>
#include <iostream>

class Vec2 {
public:
    Vec2()
      : m_x(0.0f), m_y(0.0f) {
    }

    Vec2(float x, float y)
      : m_x(x), m_y(y) {
    }

    float x() const {
        return m_x;
    }

    float y() const {
        return m_y;
    }

    void normalize() {
        float s = 1.0f / sqrt(m_x * m_x + m_y * m_y);
        m_x *= s;
        m_y *= s;
    }

    Vec2 operator+(const Vec2& rhs) const {
        return Vec2(m_x + rhs.m_x, m_y + rhs.m_y);
    }

    Vec2 operator-(const Vec2& rhs) const {
        return Vec2(m_x - rhs.m_x, m_y - rhs.m_y);
    }

    Vec2 operator*(float s) const {
        return Vec2(m_x * s, m_y * s);
    }

private:
    float m_x, m_y;
};

static float cross(const Vec2& v1, const Vec2& v2) {
    return v1.x() * v2.y() - v1.y() * v2.x();
}

class Triangle {
public:
    Triangle()
      : m_sideLenA(0), m_sideLenB(0), m_sideLenC(0) {
    }

    Triangle(int sideLenA, int sideLenB, int sideLenC)
      : m_sideLenA(sideLenA),
        m_sideLenB(sideLenB),
        m_sideLenC(sideLenC) {
    }

    int getSideLenA() const {
        return m_sideLenA;
    }

    int getSideLenB() const {
        return m_sideLenB;
    }

    int getSideLenC() const {
        return m_sideLenC;
    }

private:
    int m_sideLenA, m_sideLenB, m_sideLenC;
};

class Connector {
public:
    Connector(int sideLen, int triIdx1, int triIdx2, bool flipped);

    bool operator<(const Connector& rhs) const;

    void print() const {
        std::cout << m_sideLen << "/" << m_triIdx1 << "/"
                  << m_triIdx2 << "/" << m_flipped << " ";
    }

private:
    int m_sideLen;
    int m_triIdx1, m_triIdx2;
    bool m_flipped;
};

typedef std::vector<Triangle> TriangleVec;
typedef std::multimap<int, int> SideMap;

typedef std::set<int> TriangleSet;
typedef std::set<Connector> ConnectorSet;

class SolutionKey {
public:
    SolutionKey() {
    }

    void init(int triIdx);
    void add(int triIdx, const Connector& conn);

    bool containsTriangle(int triIdx) const;
    int minTriangle() const;

    bool operator<(const SolutionKey& rhs) const;

    void print() const;

private:
    TriangleSet m_tris;
    ConnectorSet m_conns;
};

typedef std::map<SolutionKey, class SolutionData> SolutionMap;

class SolutionData {
public:
    SolutionData()
      : m_lastPeriIdx(0),
        m_rotAng(0.0f),
        m_xShift(0.0f), m_yShift(0.0f) {
    }

    void init(int triIdx);

    bool fitsInBox();
    bool selfOverlaps() const;

    void nextGeneration(
        const SolutionKey& key, bool useTrim, SolutionMap& rNewSols) const;

    void print() const;

private:
    void addTriangle(
        const SolutionKey& key, int periIdx, int newTriIdx,
        SolutionMap& rNewSols) const;

    std::vector<int> m_periTris;
    std::vector<int> m_periLens;
    std::vector<bool> m_periFlipped;
    std::vector<Vec2> m_periPoints;

    int m_lastPeriIdx;

    std::vector<Vec2> m_triPoints;

    float m_rotAng;
    float m_xShift, m_yShift;
};

static int BoxW  = 0;
static int BoxH  = 0;
static int BoxD2 = 0;

static TriangleVec AllTriangles;
static SideMap AllSides;

Connector::Connector(
    int sideLen, int triIdx1, int triIdx2, bool flipped)
  : m_sideLen(sideLen),
    m_flipped(flipped) {
    if (triIdx1 < triIdx2) {
        m_triIdx1 = triIdx1;
        m_triIdx2 = triIdx2;
    } else {
        m_triIdx1 = triIdx2;
        m_triIdx2 = triIdx1;
    }
}

bool Connector::operator<(const Connector& rhs) const {
    if (m_sideLen < rhs.m_sideLen) {
        return true;
    } else if (m_sideLen > rhs.m_sideLen) {
        return false;
    }

    if (m_triIdx1 < rhs.m_triIdx1) {
        return true;
    } else if (m_triIdx1 > rhs.m_triIdx1) {
        return false;
    }

    if (m_triIdx2 < rhs.m_triIdx2) {
        return true;
    } else if (m_triIdx2 > rhs.m_triIdx2) {
        return false;
    }

    return m_flipped < rhs.m_flipped;
}

void SolutionKey::init(int triIdx) {
    m_tris.insert(triIdx);
}

void SolutionKey::add(int triIdx, const Connector& conn) {
    m_tris.insert(triIdx);
    m_conns.insert(conn);
}

bool SolutionKey::containsTriangle(int triIdx) const {
    return m_tris.count(triIdx);
}

int SolutionKey::minTriangle() const {
    return *m_tris.begin();
}

bool SolutionKey::operator<(const SolutionKey& rhs) const {
    if (m_tris.size() < rhs.m_tris.size()) {
        return true;
    } else if (m_tris.size() > rhs.m_tris.size()) {
        return false;
    }

    TriangleSet::const_iterator triIt1 = m_tris.begin();
    TriangleSet::const_iterator triIt2 = rhs.m_tris.begin();
    while (triIt1 != m_tris.end()) {
        if (*triIt1 < *triIt2) {
           return true;
        } else if (*triIt2 < *triIt1) {
           return false;
        }
        ++triIt1;
        ++triIt2;
    }

    if (m_conns.size() < rhs.m_conns.size()) {
        return true;
    } else if (m_conns.size() > rhs.m_conns.size()) {
        return false;
    }

    ConnectorSet::const_iterator connIt1 = m_conns.begin();
    ConnectorSet::const_iterator connIt2 = rhs.m_conns.begin();
    while (connIt1 != m_conns.end()) {
        if (*connIt1 < *connIt2) {
           return true;
        } else if (*connIt2 < *connIt1) {
           return false;
        }
        ++connIt1;
        ++connIt2;
    }

    return false;
}

void SolutionKey::print() const {
    TriangleSet::const_iterator triIt = m_tris.begin();
    while (triIt != m_tris.end()) {
        std::cout << *triIt << " ";
        ++triIt;
    }
    std::cout << "\n";

    ConnectorSet::const_iterator connIt = m_conns.begin();
    while (connIt != m_conns.end()) {
        connIt->print();
        ++connIt;
    }
    std::cout << "\n";
}

void SolutionData::init(int triIdx) {
    const Triangle& tri = AllTriangles[triIdx];

    m_periTris.push_back(triIdx);
    m_periTris.push_back(triIdx);
    m_periTris.push_back(triIdx);

    m_periLens.push_back(tri.getSideLenB());
    m_periLens.push_back(tri.getSideLenC());
    m_periLens.push_back(tri.getSideLenA());

    m_periFlipped.push_back(false);
    m_periFlipped.push_back(false);
    m_periFlipped.push_back(false);

    m_periPoints.push_back(Vec2(0.0f, 0.0f));
    m_periPoints.push_back(Vec2(tri.getSideLenB(), 0.0f));
    m_periPoints.push_back(Vec2(0.0f, tri.getSideLenA()));

    m_triPoints = m_periPoints;

    m_periPoints.push_back(Vec2(0.0f, 0.0f));
}

bool SolutionData::fitsInBox() {
    int nStep = 8;
    float angInc = 0.5f * M_PI / nStep;

    for (;;) {
        bool mayFit = false;
        float ang = 0.0f;

        for (int iStep = 0; iStep <= nStep; ++iStep) {
            float cosAng = cos(ang);
            float sinAng = sin(ang);

            float xMin = 0.0f;
            float xMax = 0.0f;
            float yMin = 0.0f;
            float yMax = 0.0f;
            bool isFirst = true;

            for (int iPeri = 0; iPeri < m_periLens.size(); ++iPeri) {
                const Vec2& pt = m_periPoints[iPeri];
                float x = cosAng * pt.x() - sinAng * pt.y();
                float y = sinAng * pt.x() + cosAng * pt.y();

                if (isFirst) {
                    xMin = x;
                    xMax = x;
                    yMin = y;
                    yMax = y;
                    isFirst = false;
                } else {
                    if (x < xMin) {
                        xMin = x;
                    } else if (x > xMax) {
                        xMax = x;
                    }
                    if (y < yMin) {
                        yMin = y;
                    } else if (y > yMax) {
                        yMax = y;
                    }
                }
            }

            float w = xMax - xMin;
            float h = yMax - yMin;

            bool fits = false;
            if ((BoxW >= BoxH) == (w >= h)) {
                if (w <= BoxW && h <= BoxH) {
                    m_rotAng = ang;
                    m_xShift = 0.5f * BoxW - 0.5f * (xMax + xMin);
                    m_yShift = 0.5f * BoxH - 0.5f * (yMax + yMin);
                    return true;
                }
            } else {
                if (h <= BoxW && w <= BoxH) {
                    m_rotAng = ang + 0.5f * M_PI;
                    m_xShift = 0.5f * BoxW + 0.5f * (yMax + yMin);
                    m_yShift = 0.5f * BoxH - 0.5f * (xMax + xMin);
                    return true;
                }
            }

            w -= 0.125f * w * angInc * angInc + 0.5f * h * angInc;
            h -= 0.125f * h * angInc * angInc + 0.5f * w * angInc;

            if ((BoxW < BoxH) == (w < h)) {
                if (w <= BoxW && h <= BoxH) {
                    mayFit = true;
                }
            } else {
                if (h <= BoxW && w <= BoxH) {
                    mayFit = true;
                }
            }

            ang += angInc;
        }

        if (!mayFit) {
            break;
        }

        nStep *= 4;
        angInc *= 0.25f;
    }

    return false;
}

static bool intersects(
    const Vec2& p1, const Vec2& p2,
    const Vec2& q1, const Vec2& q2) {

    if (cross(p2 - p1, q1 - p1) * cross(p2 - p1, q2 - p1) > 0.0f) {
        return false;
    }

    if (cross(q2 - q1, p1 - q1) * cross(q2 - q1, p2 - q1) > 0.0f) {
        return false;
    }

    return true;
}

bool SolutionData::selfOverlaps() const {
    int periSize = m_periPoints.size();

    int triIdx = m_periTris[m_lastPeriIdx];
    const Triangle& tri = AllTriangles[triIdx];
    float offsScale = 0.0001f / tri.getSideLenC();

    const Vec2& pt1 = m_periPoints[m_lastPeriIdx];
    const Vec2& pt3 = m_periPoints[m_lastPeriIdx + 1];
    const Vec2& pt2 = m_periPoints[m_lastPeriIdx + 2];

    Vec2 pt1o = pt1 + ((pt2 - pt1) + (pt3 - pt1)) * offsScale;
    Vec2 pt2o = pt2 + ((pt1 - pt2) + (pt3 - pt2)) * offsScale;
    Vec2 pt3o = pt3 + ((pt1 - pt3) + (pt2 - pt3)) * offsScale;

    float xMax = m_periPoints[0].x();
    float yMax = m_periPoints[0].y();
    for (int iPeri = 1; iPeri < m_periLens.size(); ++iPeri) {
        if (m_periPoints[iPeri].x() > xMax) {
            xMax = m_periPoints[iPeri].x();
        }
        if (m_periPoints[iPeri].y() > yMax) {
            yMax = m_periPoints[iPeri].y();
        }
    }

    Vec2 ptOut(xMax + 0.3f, yMax + 0.7f);
    int nOutInter = 0;

    for (int iPeri = 0; iPeri < m_periLens.size(); ++iPeri) {
        int iNextPeri = iPeri + 1;
        if (iPeri == m_lastPeriIdx) {
            ++iNextPeri;
        } else if (iPeri == m_lastPeriIdx + 1) {
            continue;
        }

        if (intersects(
            m_periPoints[iPeri], m_periPoints[iNextPeri], pt1o, pt3o)) {
            return true;
        }

        if (intersects(
            m_periPoints[iPeri], m_periPoints[iNextPeri], pt2o, pt3o)) {
            return true;
        }

        if (intersects(
            m_periPoints[iPeri], m_periPoints[iNextPeri], pt3o, ptOut)) {
            ++nOutInter;
        }
    }

    return nOutInter % 2;
}

void SolutionData::nextGeneration(
    const SolutionKey& key, bool useTrim, SolutionMap& rNewSols) const
{
    int nPeri = m_periLens.size();
    for (int iPeri = (useTrim ? 0 : m_lastPeriIdx); iPeri < nPeri; ++iPeri) {
        int len = m_periLens[iPeri];
        SideMap::const_iterator itCand = AllSides.lower_bound(len);
        SideMap::const_iterator itCandEnd = AllSides.upper_bound(len);
        while (itCand != itCandEnd) {
            int candTriIdx = itCand->second;
            if (!key.containsTriangle(candTriIdx) &&
                candTriIdx > key.minTriangle()) {
                addTriangle(key, iPeri, candTriIdx, rNewSols);
            }
            ++itCand;
        }
    }
}

void SolutionData::print() const {
    float cosAng = cos(m_rotAng);
    float sinAng = sin(m_rotAng);

    int nPoint = m_triPoints.size();

    for (int iPoint = 0; iPoint < nPoint; ++iPoint) {
        const Vec2& pt = m_triPoints[iPoint];
        float x = cosAng * pt.x() - sinAng * pt.y() + m_xShift;
        float y = sinAng * pt.x() + cosAng * pt.y() + m_yShift;
        std::cout << "(" << x << ", " << y << ")";

        if (iPoint % 3 == 2) {
            std::cout << std::endl;
        } else {
            std::cout << " ";
        }
    }
}

void SolutionData::addTriangle(
    const SolutionKey& key, int periIdx, int newTriIdx,
    SolutionMap& rNewSols) const {

    int triIdx = m_periTris[periIdx];
    bool flipped = m_periFlipped[periIdx];
    int len = m_periLens[periIdx];

    Connector conn1(len, triIdx, newTriIdx, flipped);
    SolutionKey newKey1(key);
    newKey1.add(newTriIdx, conn1);
    bool isNew1 = (rNewSols.find(newKey1) == rNewSols.end());

    Connector conn2(len, triIdx, newTriIdx, !flipped);
    SolutionKey newKey2(key);
    newKey2.add(newTriIdx, conn2);
    bool isNew2 = (rNewSols.find(newKey2) == rNewSols.end());

    if (!(isNew1 || isNew2)) {
        return;
    }

    SolutionData data;

    int periSize = m_periLens.size();
    data.m_periTris.resize(periSize + 1);
    data.m_periLens.resize(periSize + 1);
    data.m_periFlipped.resize(periSize + 1);
    data.m_periPoints.resize(periSize + 2);
    for (int k = 0; k <= periIdx; ++k) {
        data.m_periTris[k] = m_periTris[k];
        data.m_periLens[k] = m_periLens[k];
        data.m_periFlipped[k] = m_periFlipped[k];
        data.m_periPoints[k] = m_periPoints[k];
    }
    for (int k = periIdx + 1; k < periSize; ++k) {
        data.m_periTris[k + 1] = m_periTris[k];
        data.m_periLens[k + 1] = m_periLens[k];
        data.m_periFlipped[k + 1] = m_periFlipped[k];
        data.m_periPoints[k + 1] = m_periPoints[k];
    }
    data.m_periPoints[periSize + 1] = m_periPoints[periSize];

    data.m_lastPeriIdx = periIdx;

    data.m_periTris[periIdx] = newTriIdx;
    data.m_periTris[periIdx + 1] = newTriIdx;

    int triSize = m_triPoints.size();
    data.m_triPoints.resize(triSize + 3);
    for (int k = 0; k < triSize; ++k) {
        data.m_triPoints[k] = m_triPoints[k];
    }

    const Triangle& tri = AllTriangles[newTriIdx];
    int lenA = tri.getSideLenA();
    int lenB = tri.getSideLenB();
    int lenC = tri.getSideLenC();

    const Vec2& pt1 = m_periPoints[periIdx];
    const Vec2& pt2 = m_periPoints[periIdx + 1];

    Vec2 v = pt2 - pt1;
    v.normalize();
    Vec2 vn(v.y(), -v.x());

    float dA = lenA;
    float dB = lenB;
    float dC = lenC;

    int len1 = 0, len2 = 0;
    Vec2 pt31, pt32;

    if (len == lenA) {
        len1 = lenB;
        len2 = lenC;
        pt31 = pt1 + vn * dB;
        pt32 = pt2 + vn * dB;
    } else if (len == lenB) {
        len1 = lenC;
        len2 = lenA;
        pt31 = pt2 + vn * dA;
        pt32 = pt1 + vn * dA;
    } else {
        len1 = lenA;
        len2 = lenB;
        pt31 = pt1 + v * (dA * dA / dC) + vn * (dA * dB / dC);
        pt32 = pt1 + v * (dB * dB / dC) + vn * (dA * dB / dC);
    }

    if (isNew1) {
        data.m_periLens[periIdx] = len1;
        data.m_periLens[periIdx + 1] = len2;
        data.m_periFlipped[periIdx] = false;
        data.m_periFlipped[periIdx + 1] = false;
        data.m_periPoints[periIdx + 1] = pt31;

        data.m_triPoints[triSize] = pt1;
        data.m_triPoints[triSize + 1] = pt31;
        data.m_triPoints[triSize + 2] = pt2;

        rNewSols.insert(std::make_pair(newKey1, data));
    }

    if (isNew2) {
        data.m_periLens[periIdx] = len2;
        data.m_periLens[periIdx + 1] = len1;
        data.m_periFlipped[periIdx] = true;
        data.m_periFlipped[periIdx + 1] = true;
        data.m_periPoints[periIdx + 1] = pt32;

        data.m_triPoints[triSize] = pt1;
        data.m_triPoints[triSize + 1] = pt32;
        data.m_triPoints[triSize + 2] = pt2;

        rNewSols.insert(std::make_pair(newKey2, data));
    }
}

static void enumerateTriangles() {
    for (int c = 2; c * c <= BoxD2; ++c) {
        for (int a = 1; 2 * a * a < c * c; ++a) {
            int b = static_cast<int>(sqrt(c * c - a * a) + 0.5f);
            if (a * a + b * b == c * c) {
                Triangle tri(a, b, c);

                int triIdx = AllTriangles.size();
                AllTriangles.push_back(Triangle(a, b, c));

                AllSides.insert(std::make_pair(a, triIdx));
                AllSides.insert(std::make_pair(b, triIdx));
                AllSides.insert(std::make_pair(c, triIdx));
            }
        }
    }
}

static void eliminateInvalid(SolutionMap& rSols) {
    SolutionMap::iterator it = rSols.begin();
    while (it != rSols.end()) {
        SolutionMap::iterator itNext = it;
        ++itNext;

        SolutionData& rSolData = it->second;

        if (!rSolData.fitsInBox()) {
            rSols.erase(it);
        } else if (rSolData.selfOverlaps()) {
            rSols.erase(it);
        }

        it = itNext;
    }
}

static void trimSolutions(SolutionMap& rSols, int trimCount) {
    if (trimCount >= rSols.size()) {
        return;
    }

    SolutionMap::iterator it = rSols.begin();
    for (int iTrim = 0; iTrim < trimCount; ++iTrim) {
        ++it;
    }

    rSols.erase(it, rSols.end());
}

static void nextGeneration(
    const SolutionMap& srcSols, bool useTrim, SolutionMap& rNewSols) {
    SolutionMap::const_iterator it = srcSols.begin();
    while (it != srcSols.end()) {
        const SolutionKey& solKey = it->first;
        const SolutionData& solData = it->second;
        solData.nextGeneration(solKey, useTrim, rNewSols);
        ++it;
    }
}

static void printSolutions(const SolutionMap& sols) {
    std::cout << std::fixed;
    std::cout.precision(3);

    SolutionMap::const_iterator it = sols.begin();
    while (it != sols.end()) {
        const SolutionKey& solKey = it->first;
        solKey.print();
        const SolutionData& solData = it->second;
        solData.print();
        std::cout << std::endl;
        ++it;
    }
}

int main(int argc, char* argv[]) {
    if (argc < 3) {
        std::cerr << "usage: " << argv[0] << " width height [trimCount]"
                  << std::endl;
        return 1;
    }

    std::istringstream streamW(argv[1]);
    streamW >> BoxW;
    std::istringstream streamH(argv[2]);
    streamH >> BoxH;

    int trimCount = 0;
    if (argc > 3) {
        std::istringstream streamTrim(argv[3]);
        streamTrim >> trimCount;
    }

    BoxD2 = BoxW * BoxW + BoxH * BoxH;

    enumerateTriangles();
    int nTri = AllTriangles.size();

    SolutionMap solGen[2];
    int srcGen = 0;

    for (int iTri = 0; iTri < nTri; ++iTri) {
        const Triangle& tri = AllTriangles[iTri];

        SolutionKey solKey;
        solKey.init(iTri);

        SolutionData solData;
        solData.init(iTri);

        solGen[srcGen].insert(std::make_pair(solKey, solData));
    }

    int level = 1;

    for (;;) {
        eliminateInvalid(solGen[srcGen]);
        std::cout << "level: " << level
                  << " solutions: " << solGen[srcGen].size() << std::endl;
        if (solGen[srcGen].empty()) {
            break;
        }

        if (trimCount > 0) {
            trimSolutions(solGen[srcGen], trimCount);
        }

        solGen[1 - srcGen].clear();
        nextGeneration(solGen[srcGen], trimCount > 0, solGen[1 - srcGen]);

        srcGen = 1 - srcGen;
        ++level;
    }

    printSolutions(solGen[1 - srcGen]);

    return 0;
}
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.