Strategisches Wählen, das Spiel


37

Eines der gebräuchlichsten Abstimmungssysteme für Wahlen mit einem Gewinner ist die Methode der Mehrfachabstimmung. Einfach ausgedrückt gewinnt der Kandidat mit den meisten Stimmen. Die Mehrheitsentscheidung ist jedoch mathematisch nicht stichhaltig und kann zu Situationen führen, in denen die Wähler gezwungen sind, für das "kleinere von zwei Übeln" zu stimmen, im Gegensatz zu dem Kandidaten, den sie wirklich bevorzugen.

In diesem Spiel werden Sie ein Programm schreiben, das das System der Mehrfachwahl nutzt. Es wird für einen von drei Kandidaten bei einer Wahl abgestimmt. Jeder Kandidat ist mit einer bestimmten Auszahlung für sich selbst verbunden. Ihr Ziel ist es, die erwartete Auszahlung zu maximieren.

Die Auszahlungen sind "gleichmäßig" zufällig verteilt, ändern sich mit jeder Wahl und addieren sich zu 100. Kandidat A könnte eine Auszahlung von 40 haben, Kandidat B könnte eine Auszahlung von 27 haben und Kandidat C könnte eine Auszahlung von 33 haben. Jeder Spieler hat einen anderen Satz von Auszahlungen.

Wenn Sie an der Reihe sind, haben Sie unvollständige Informationen. Nachfolgend finden Sie die Informationen, die Ihnen zur Verfügung stehen. Da Sie nicht wissen, wie hoch die individuellen Auszahlungen anderer Spieler sind, müssen Sie vorhersagen, wie sie angesichts der aktuellen Umfrageergebnisse abstimmen würden.

  • Die bisherigen Teilergebnisse der Wahlen
  • Die Anzahl der Teilnehmer (außer Ihnen), die noch nicht abgestimmt haben
  • Ihre persönlichen Auszahlungen für jeden der Kandidaten
  • Die Gesamtgruppenauszahlungen für jeden der Kandidaten

Nachdem jedem Spieler eine Abstimmungsmöglichkeit eingeräumt wurde, gewinnt der Kandidat mit den meisten Stimmen gemäß der Mehrfachabstimmung. Jeder Spieler erhält dann die Anzahl der Punkte, die seiner Auszahlung von diesem Kandidaten entsprechen. Bei Stimmengleichheit entspricht die Anzahl der zugewiesenen Punkte dem Durchschnitt der gebundenen Kandidaten.

Turnierstruktur

Bei der ersten Instanziierung wird dem Teilnehmer die Anzahl der im Turnier abgehaltenen Wahlen mitgeteilt. Ich werde versuchen, eine extrem große Anzahl von Wahlen abzuhalten. Dann wird jede Wahl einzeln durchgeführt.

Nachdem die Teilnehmer gemischt wurden, erhält jeder eine Stimmabgabe. Sie erhalten die oben aufgeführten eingeschränkten Informationen und geben eine Nummer zurück, die ihre Stimmabgabe bestätigt. Nachdem jede Wahl beendet ist, erhält jeder Bot die endgültigen Abstimmungsergebnisse und deren Punktzahl erhöht sich aus dieser Wahl.

Der siegreiche Teilnehmer wird derjenige mit der höchsten Gesamtpunktzahl sein, nachdem eine große Anzahl von Wahlen stattgefunden hat. Der Controller berechnet auch eine "normalisierte" Punktzahl für jeden Teilnehmer, indem er seine Punktzahl mit der für einen Bot mit zufälliger Abstimmung vorhergesagten Punktzahlverteilung vergleicht.

Einreichungsdetails

Die Einreichungen erfolgen in Form von Java 8-Klassen. Jeder Teilnehmer muss die folgende Schnittstelle implementieren:

public interface Player
{
    public String getName();
    public int getVote(int [] voteCounts, int votersRemaining, int [] payoffs, int[] totalPayoffs);
    public void receiveResults(int[] voteCounts, double result);
}
  • Ihr Konstruktor sollte eine einzelne intals Parameter verwenden, die die Anzahl der Wahlen angibt, die abgehalten werden.
  • Die getName()Methode gibt den Namen zurück, der in der Bestenliste verwendet werden soll. Auf diese Weise können Sie schön formatierte Namen haben, aber verrückt werden.
  • Die getVote(...)Methode zurückgibt 0, 1oder2 um anzugeben, welcher Kandidat die Stimme erhalten wird.
  • Die receiveResults(...)Methode besteht hauptsächlich darin, die Existenz komplexerer Strategien zu ermöglichen, die historische Daten verwenden.
  • Sie dürfen so ziemlich alle anderen Methoden / Instanzvariablen erstellen, die Sie aufzeichnen und die Ihnen gegebenen Informationen verarbeiten möchten.

Turnierzyklus, erweitert

  1. Die Teilnehmer werden jeweils mit instanziiert new entrantName(int numElections) .
  2. Für jede Wahl:
    1. Der Controller bestimmt zufällig die Auszahlungen für jeden Spieler für diese Wahl. Der Code dafür ist unten angegeben. Dann mischt es die Spieler und lässt sie abstimmen.
    2. Die Methode der Teilnehmer public int getVote(int [] voteCounts, int votersRemaining, int [] payoffs, int[] totalPayoffs)aufgerufen wird , und die Teilnehmer geben ihre Stimme von 0, 1oder2 für den Kandidaten ihrer Wahl.
    3. Teilnehmer, deren getVote(...)Methode keine gültige Bewertung abgibt, erhalten eine zufällige Bewertung.
    4. Nachdem jeder gewählt hat, bestimmt der Controller die Wahlergebnisse durch das Mehrfachverfahren.
    5. Die Teilnehmer werden durch Aufrufen ihrer Methode über die endgültigen Stimmenzählungen und deren Auszahlung informiert public void receiveResults(int[] voteCounts, double result).
  3. Nachdem alle Wahlen stattgefunden haben, ist der Gewinner derjenige mit der höchsten Punktzahl.

Die zufällige Verteilung der Auszahlungen

Die genaue Verteilung wird einen signifikanten Einfluss auf das Gameplay haben. Ich habe eine Verteilung mit einer großen Standardabweichung (ca. 23,9235) gewählt, die sowohl sehr hohe als auch sehr niedrige Auszahlungen ermöglicht. Ich habe überprüft, dass jede der drei Auszahlungen eine identische Verteilung hat.

public int[] createPlayerPayoffs()
{
    int cut1;
    int cut2;
    do{
        cut1 = rnd.nextInt(101);
        cut2 = rnd.nextInt(101);  
    } while (cut1 + cut2 > 100);
    int rem = 100 - cut1 - cut2;
    int[] set = new int[]{cut1,cut2,rem};
    totalPayoffs[0] += set[0];
    totalPayoffs[1] += set[1];
    totalPayoffs[2] += set[2];
    return set;
}

Weitere Regeln

Hier sind einige allgemeinere Regeln.

  • Ihr Programm darf keine Teile des Controllers oder anderer Teilnehmer oder deren Speicher ausführen, ändern oder instanziieren.
  • Da Ihr Programm während des gesamten Turniers "live" bleibt, erstellen Sie keine Dateien.
  • Interagiere nicht mit anderen Programmen, hilf ihnen oder ziele darauf ab.
  • Sie können mehrere Teilnehmer einreichen, sofern diese sich angemessen unterscheiden und Sie die oben genannten Regeln befolgen.
  • Ich habe kein genaues Zeitlimit angegeben, würde mich aber über Laufzeiten freuen, die deutlich unter einer Sekunde pro Anruf liegen. Ich möchte so viele Wahlen wie möglich durchführen können.

Der Controller

Die Steuerung finden Sie hier . Das Hauptprogramm ist Tournament.java. Es gibt auch zwei einfache Bots, die gegeneinander antreten, betitelt RandomBotund PersonalFavoriteBot. Ich werde diese beiden Bots in einer Antwort veröffentlichen.

Bestenliste

Es sieht so aus, als wäre ExpectantBot der derzeitige Marktführer, gefolgt von Monte Carlo und StaBot.

Leaderboard - 20000000 elections:
   767007688.17 (  937.86) - ExpectantBot                            
   766602158.17 (  934.07) - Monte Carlo 47                          
   766230646.17 (  930.60) - StatBot                                
   766054547.17 (  928.95) - ExpectorBot                             
   764671254.17 (  916.02) - CircumspectBot                          
   763618945.67 (  906.19) - LockBot                                 
   763410502.67 (  904.24) - PersonalFavoriteBot343                  
   762929675.17 (  899.75) - BasicBot                                
   761986681.67 (  890.93) - StrategicBot50                          
   760322001.17 (  875.37) - Priam                                   
   760057860.67 (  872.90) - BestViableCandidate (2842200 from ratio, with 1422897 tie-breakers of 20000000 total runs)
   759631608.17 (  868.92) - Kelly's Favorite                        
   759336650.67 (  866.16) - Optimist                                
   758564904.67 (  858.95) - SometimesSecondBestBot                  
   754421221.17 (  820.22) - ABotDoNotForget                         
   753610971.17 (  812.65) - NoThirdPartyBot                         
   753019290.17 (  807.12) - NoClueBot                               
   736394317.17 (  651.73) - HateBot670                              
   711344874.67 (  417.60) - Follower                                
   705393669.17 (  361.97) - HipBot                                  
   691422086.17 (  231.38) - CommunismBot0                           
   691382708.17 (  231.01) - SmashAttemptByEquality (on 20000000 elections)
   691301072.67 (  230.25) - RandomBot870                            
   636705213.67 ( -280.04) - ExtremistBot                            
The tournament took 34573.365419071 seconds, or 576.2227569845166 minutes.

Hier sind einige ältere Turniere, aber keiner der Bots hat sich seit diesen Läufen in der Funktionalität geändert.

Leaderboard - 10000000 elections:
   383350646.83 (  661.14) - ExpectantBot                            
   383263734.33 (  659.99) - LearnBot                                
   383261776.83 (  659.97) - Monte Carlo 48                          
   382984800.83 (  656.31) - ExpectorBot                             
   382530758.33 (  650.31) - CircumspectBot                          
   381950600.33 (  642.64) - PersonalFavoriteBot663                  
   381742600.33 (  639.89) - LockBot                                 
   381336552.33 (  634.52) - BasicBot                                
   381078991.83 (  631.12) - StrategicBot232                         
   380048521.83 (  617.50) - Priam                                   
   380022892.33 (  617.16) - BestViableCandidate (1418072 from ratio, with 708882 tie-breakers of 10000000 total runs)
   379788384.83 (  614.06) - Kelly's Favorite                        
   379656387.33 (  612.31) - Optimist                                
   379090198.33 (  604.83) - SometimesSecondBestBot                  
   377210328.33 (  579.98) - ABotDoNotForget                         
   376821747.83 (  574.84) - NoThirdPartyBot                         
   376496872.33 (  570.55) - NoClueBot                               
   368154977.33 (  460.28) - HateBot155                              
   355550516.33 (  293.67) - Follower                                
   352727498.83 (  256.36) - HipBot                                  
   345702626.33 (  163.50) - RandomBot561                            
   345639854.33 (  162.67) - SmashAttemptByEquality (on 10000000 elections)
   345567936.33 (  161.72) - CommunismBot404                         
   318364543.33 ( -197.86) - ExtremistBot                            
The tournament took 15170.484259763 seconds, or 252.84140432938332 minutes.

Ich lief auch ein zweites 10-Meter-Turnier und bestätigte den Vorsprung von ExpectantBot.

Leaderboard - 10000000 elections:
   383388921.83 (  661.65) - ExpectantBot                            
   383175701.83 (  658.83) - Monte Carlo 46                          
   383164037.33 (  658.68) - LearnBot                                
   383162018.33 (  658.65) - ExpectorBot                             
   382292706.83 (  647.16) - CircumspectBot                          
   381960530.83 (  642.77) - LockBot                                 
   381786899.33 (  640.47) - PersonalFavoriteBot644                  
   381278314.83 (  633.75) - BasicBot                                
   381030871.83 (  630.48) - StrategicBot372                         
   380220471.33 (  619.77) - BestViableCandidate (1419177 from ratio, with 711341 tie-breakers of 10000000 total runs)
   380089578.33 (  618.04) - Priam                                   
   379714345.33 (  613.08) - Kelly's Favorite                        
   379548799.83 (  610.89) - Optimist                                
   379289709.83 (  607.46) - SometimesSecondBestBot                  
   377082526.83 (  578.29) - ABotDoNotForget                         
   376886555.33 (  575.70) - NoThirdPartyBot                         
   376473476.33 (  570.24) - NoClueBot                               
   368124262.83 (  459.88) - HateBot469                              
   355642629.83 (  294.89) - Follower                                
   352691241.83 (  255.88) - HipBot                                  
   345806934.83 (  164.88) - CommunismBot152                         
   345717541.33 (  163.70) - SmashAttemptByEquality (on 10000000 elections)
   345687786.83 (  163.30) - RandomBot484                            
   318549040.83 ( -195.42) - ExtremistBot                            
The tournament took 17115.327209018 seconds, or 285.25545348363335 minutes.

oO wow, meins hat es so schlecht gemacht!
Ismael Miguel

Entsprechend dem, was ich im Code gesehen habe, ist der 2. Parameter die Anzahl der verbleibenden Stimmen. Und die erste ist Arrayeine Zählung aller Stimmen. Hab ich recht?
Ismael Miguel

1
@IsmaelMiguel Ja.
PhiNotPi

1
Der Zweite. Dies sind die Teilergebnisse der Wahlen, dh die Stimmen, die von den Leuten vor Ihnen in der gemischten Reihenfolge abgegeben wurden.
PhiNotPi

2
Vielleicht möchten Sie auch sehen, was passiert, wenn Sie den Wählern eine Reihe von Klonen geben. Auf einen kurzen Blick, sometimesSecondBestBot, NoThirdPartyBot und Optimist alle scheinen zu profitieren von größeren Abstimmungs Pools (Wie tun extremistBot und in seiner eigenen Art und Weise, communismBot aber das ist weniger wichtig).
Saidoro

Antworten:


10

NoThirdPartyBot

Dieser Bot versucht zu erraten, welcher Kandidat der dritte sein wird und wählt den Kandidaten, den er am liebsten mag, unter den beiden Spitzenreitern aus.

import java.util.Arrays;
import java.util.Collections;
import java.util.List;

public class NoThirdPartyBot implements Player {

    public NoThirdPartyBot(int e) {
    }


    @Override
    public String getName() {
        return "NoThirdPartyBot";
    }

    @Override
    public int getVote(int[] voteCounts, int votersRemaining, int[] payoffs,
            int[] totalPayoffs) {
        List<Integer> order = order(totalPayoffs);

        if (payoffs[order.get(0)] > payoffs[order.get(1)]) {
            return order.get(0);
        } else {
            return order.get(1);
        }
    }

    static List<Integer> order(int[] array) {
        List<Integer> indexes = Arrays.asList(0, 1, 2);
        Collections.sort(indexes, (i1, i2) -> array[i2] - array[i1]);
        return indexes;
    }

    @Override
    public void receiveResults(int[] voteCounts, double result) {
    }
}

CircumspectBot

Dieser Bot wählt seinen Favoriten, der mathematisch nicht beseitigt wurde.

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;


public class CircumspectBot implements Player {

    public CircumspectBot(int elections) {
    }

    @Override
    public String getName() {
        return "CircumspectBot";
    }

    @Override
    public int getVote(int[] voteCounts, int votersRemaining, int[] payoffs,
            int[] totalPayoffs) {
        List<Integer> indexes = new ArrayList<>();
        int topVote = Arrays.stream(voteCounts).max().getAsInt();
        for (int index = 0; index < 3; index++) {
            if (voteCounts[index] + votersRemaining + 1 >= topVote) {
                indexes.add(index);
            }
        }
        Collections.sort(indexes, (i1, i2) -> payoffs[i2] - payoffs[i1]);

        return indexes.get(0);
    }

    @Override
    public void receiveResults(int[] voteCounts, double result) {

    }

}

4
Ich würde wetten, dass Circumspect Bot strikt besser ist als Personal Favorite Bot. Nett.
isaacg

10

ExpectantBot

Dieser Bot berechnet den erwarteten Wert jeder Abstimmungsoption unter der Annahme, dass alle Wähler danach zufällig abstimmen.

import java.util.Arrays;

public class ExpectantBot implements Player {

    public ExpectantBot(int elections) {
    }

    @Override
    public String getName() {
        return "ExpectantBot";
    }

    static double choose(int x, int y) {
        if (y < 0 || y > x) return 0;
        if (y > x/2) {
            // choose(n,k) == choose(n,n-k), 
            // so this could save a little effort
            y = x - y;
        }

        double denominator = 1.0, numerator = 1.0;
        for (int i = 1; i <= y; i++) {
            denominator *= i;
            numerator *= (x + 1 - i);
        }
        return numerator / denominator;
    }

    double expectedPayout(int[] voteCounts, int[] payoffs, int votersRemaining) {
        double total = 0.0;
        for (int firstPartyVoters = 0; firstPartyVoters <= votersRemaining; firstPartyVoters++) {
            for (int secondPartyVoters = 0; secondPartyVoters <= votersRemaining - firstPartyVoters; secondPartyVoters++) {
                int thirdPartyVoters = votersRemaining - firstPartyVoters - secondPartyVoters;

                int [] newVoteCounts = voteCounts.clone();
                newVoteCounts[0] += firstPartyVoters;
                newVoteCounts[1] += secondPartyVoters;
                newVoteCounts[2] += thirdPartyVoters;
                int highest = Arrays.stream(newVoteCounts).max().getAsInt();
                int payoff = 0;
                int winCount = 0;
                for (int index = 0; index < 3; index++) {
                    if (newVoteCounts[index] == highest) {
                        payoff += payoffs[index];
                        winCount++;
                    }
                }
                double v = (double)payoff / (double) winCount;
                double value = choose(votersRemaining, firstPartyVoters)*choose(votersRemaining - firstPartyVoters, secondPartyVoters)*v*Math.pow(1/3.0, votersRemaining);
                total += value;
            }
        }
        return total;
    }

    @Override
    public int getVote(int[] voteCounts, int votersRemaining, int[] payoffs,
            int[] totalPayoffs) {

        int bestVote = 0;
        double bestScore = 0.0;
        for (int vote = 0; vote < 3; vote++) {      
            voteCounts[vote]++;
            double score = expectedPayout(voteCounts, payoffs, votersRemaining);
            if (score > bestScore) {
                bestVote = vote;
                bestScore = score;
            }
            voteCounts[vote]--;
        }
        return bestVote;

    }

    @Override
    public void receiveResults(int[] voteCounts, double result) {   
    }

}

Ohne die heftigen Metagames der anderen Gegner wäre ich überrascht, wenn irgendetwas diesen Typen schlagen würde.
DoctorHeckle

@DoctorHeckle, ich hatte Hoffnungen auf StatBot, aber ich denke du hast recht.
Winston Ewert

9

HipBot

HipBot kümmert sich nicht um Auszahlungen. Geld ist nur ein Beruhigungsmittel, das von der wahren Kunst ablenkt.

HipBot möchte für jemanden stimmen, der echt ist , nicht nur für einen Corporate Shill. Er möchte auch ihr Wahlkampfhemd nach ihrer (vermutlich) demütigenden Niederlage tragen, damit er sich überlegen fühlt, wenn der Sieger etwas falsch macht.

Deshalb wählt HipBot die Person mit den niedrigsten Stimmen oder, wenn es ein Unentschieden gibt, die Person mit der besseren Auszahlung. Nur Bio zu essen ist nicht kostenlos.

public class HipBot implements Player{

    public HipBot(int rounds){ /*Rounds are a social construct*/ }

    public String getName(){ return "HipBot"; }

    public int getVote(int [] voteCounts, int votersRemaining, int [] payoffs, int[] totalPayoffs){

        int coolest = 0;
        int lowest = 100000000;
        int gains = 0;

        for( int count = 0; count < voteCounts.length; count++ ){

            if( voteCounts[count] < lowest || (voteCounts[count] == lowest && payoffs[count] > gains) ){

                lowest = voteCounts[count];
                coolest = count;
                gains = payoffs[count];

            }

        }

        return coolest;

    }

    public void receiveResults(int[] voteCounts, double result){ /*The past is dead*/ }

}

HipBot ist ebenfalls ungetestet. Lassen Sie mich wissen, wenn etwas los ist.

BEARBEITEN: in wettbewerbsfähigeren, markigen Kommentaren hinzugefügt.


funktioniert für mich, obwohl sein Mitleid mit dem Verlierer nicht viel für seine Punktzahl
tut

5
Er hat in seinen Gedanken gewonnen, und für ihn ist das alles, was zählt: D
DoctorHeckle

8

PersonalFavoriteBot

Dieser Bot wählt einfach den Kandidaten mit der höchsten persönlichen Auszahlung und ignoriert alles andere. Einer der Hauptpunkte dieser Herausforderung ist es zu zeigen, dass dies nicht die optimale Strategie ist.

import java.lang.Math;
import java.util.Random;
/**
 * This bot picks the candidate with the highest personal payoff, ignoring everyone else's actions.
 * 
 * @author PhiNotPi 
 * @version 5/27/15
 */
public class PersonalFavoriteBot implements Player
{
    Random rnd;
    String name;
    /**
     * Constructor for objects of class PersonalFavoriteBot
     */
    public PersonalFavoriteBot(int e)
    {
       rnd = new Random(); 
       name = "PersonalFavoriteBot" + rnd.nextInt(1000);
    }

    public String getName()
    {
        return name;
    }

    public int getVote(int [] voteCounts, int votersRemaining, int [] payoffs, int[] totalPayoffs)
    {
        //return rnd.nextInt(3);
        int maxloc = 0;
        for(int i = 1; i< 3; i++)
        {
            if(payoffs[i] > payoffs[maxloc])
            {
                maxloc = i;
            }
        }
        return maxloc;
    }

    public void receiveResults(int[] voteCounts, double result)
    {

    }
}

RandomBot

Dieser Bot wählt nach dem Zufallsprinzip. Unabhängig von der Anzahl der durchgeführten Wahlen (sofern diese mit über 100 einigermaßen hoch ist) schwankt die normalisierte Punktzahl dieses Kandidaten zwischen -2 und 2.

import java.lang.Math;
import java.util.Random;
/**
 * This bot votes for a random candidate.
 * 
 * @author PhiNotPi 
 * @version 5/27/15
 */
public class RandomBot implements Player
{
    Random rnd;
    String name;
    /**
     * Constructor for objects of class RandomBot
     */
    public RandomBot(int e)
    {
       rnd = new Random(); 
       name = "RandomBot" + rnd.nextInt(1000);
    }

    public String getName()
    {
        return name;
    }

    public int getVote(int [] voteCounts, int votersRemaining, int [] payoffs, int[] totalPayoffs)
    {
        return rnd.nextInt(3);
    }

    public void receiveResults(int[] voteCounts, double result)
    {

    }
}

7

Anhänger

Follower will dazu passen. Der beste Weg, dies zu erreichen, ist, wie alle anderen zu stimmen, oder zumindest mit der Mehrzahl, die es bisher gab. Es wird die Bindung zu seiner eigenen Präferenz brechen, um ein wenig Unabhängigkeit zu zeigen. Aber nicht zu viel.

public class Follower implements Player
{
    public Follower(int e) { }

    public String getName()
    {
        return "Follower";
    }

    public int getVote(int [] voteCounts, int votersRemaining, int [] payoffs, int[] totalPayoffs)
    {
        int mostPopular = 0;
        int mostVotes = voteCounts[0];
        for (int i = 1; i < voteCounts.length; i++) {
            int votes = voteCounts[i];
            if (votes > mostVotes || (votes == mostVotes && payoffs[i] > payoffs[mostPopular])) {
                mostPopular = i;
                mostVotes = votes;
            }
        }
        return mostPopular;

    }

    public void receiveResults(int[] voteCounts, double result) { }
}

Hinweis: Ich habe dies nicht getestet. Lassen Sie mich daher wissen, wenn Fehler auftreten.


Es scheint zu funktionieren.
PhiNotPi

4

Monte Carlo

Dies simuliert eine große Anzahl zufälliger Wahlen. Dann wählt es die Wahl, die seine eigenen Gewinne maximiert.

import java.util.ArrayList;
import java.util.List;

public class MonteCarlo implements Player{

    private static long runs = 0;
    private static long elections = 0;

    public MonteCarlo(int e) {
        elections = e;
    }

    @Override
    public String getName() {
        return "Monte Carlo (difficulty " + (runs / elections) + ")";
    }

    @Override
    public int getVote(int[] voteCounts, int votersRemaining, int[] payoffs, int[] totalPayoffs) {
        elections++;
        double[] predictedPayoffs = new double[3];
        long startTime = System.nanoTime();
        while (System.nanoTime() - startTime <= 200_000){ //Let's give us 200 micro-seconds.
            runs++;
            int[] simulatedVoteCounts = voteCounts.clone();
            for (int j = 0; j < votersRemaining; j++){
                simulatedVoteCounts[((int) Math.floor(Math.random() * 3))]++;
            }
            for (int j = 0; j < 3; j++) {
                simulatedVoteCounts[j]++;
                List<Integer> winners = new ArrayList<>();
                winners.add(0);
                for (int k = 1; k < 3; k++) {
                    if (simulatedVoteCounts[k] > simulatedVoteCounts[winners.get(0)]) {
                        winners.clear();
                        winners.add(k);
                    } else if (simulatedVoteCounts[k] == simulatedVoteCounts[winners.get(0)]) {
                        winners.add(k);
                    }
                }
                for (int winner : winners) {
                    predictedPayoffs[j] += payoffs[winner] / winners.size();
                }
                simulatedVoteCounts[j]--;
            }
        }
        int best = 0;
        for (int i = 1; i < 3; i++){
            if (predictedPayoffs[i] > predictedPayoffs[best]){
                best = i;
            }
        }
        return best;
    }

    @Override
    public void receiveResults(int[] voteCounts, double result) {

    }
}

4

StatBot

StatBot basiert auf ExpectantBot; Anstatt jedoch anzunehmen, dass jede Stimme gleich wahrscheinlich ist, werden Statistiken darüber gesammelt, wie die Leute abstimmen, und diese werden zur Abschätzung der Wahrscheinlichkeit verwendet.

import java.util.Arrays;


public class StatBot implements Player {

    static private int[][][] data = new int[3][3][3];
    private int[] voteCounts;

    StatBot(int unused) {

    }

    @Override
    public String getName() {
        return "StatBot";

    }

     static double choose(int x, int y) {
            if (y < 0 || y > x) return 0;
            if (y > x/2) {
                // choose(n,k) == choose(n,n-k), 
                // so this could save a little effort
                y = x - y;
            }

            double denominator = 1.0, numerator = 1.0;
            for (int i = 1; i <= y; i++) {
                denominator *= i;
                numerator *= (x + 1 - i);
            }
            return numerator / denominator;
        }

    double expectedPayout(int[] voteCounts, int[] payoffs, int votersRemaining) {
        Integer[] indexes = {0, 1, 2};
        Arrays.sort(indexes, (i0, i1) -> voteCounts[i1] - voteCounts[i0]);
        int [] stats = data[indexes[0]][indexes[1]];
        int total_stats = Arrays.stream(stats).sum();
        double total = 0.0;
        for (int firstPartyVoters = 0; firstPartyVoters <= votersRemaining; firstPartyVoters++) {
            for (int secondPartyVoters = 0; secondPartyVoters <= votersRemaining - firstPartyVoters; secondPartyVoters++) {
                int thirdPartyVoters = votersRemaining - firstPartyVoters - secondPartyVoters;

                int [] newVoteCounts = voteCounts.clone();
                newVoteCounts[0] += firstPartyVoters;
                newVoteCounts[1] += secondPartyVoters;
                newVoteCounts[2] += thirdPartyVoters;
                int highest = 0;
                for (int h : newVoteCounts) {
                    if (h > highest) highest = h;
                }
                int payoff = 0;
                int winCount = 0;
                for (int index = 0; index < 3; index++) {
                    if (newVoteCounts[index] == highest) {
                        payoff += payoffs[index];
                        winCount++;
                    }
                }
                double v = (double)payoff / (double) winCount;
                double value = choose(votersRemaining, firstPartyVoters)*choose(votersRemaining - firstPartyVoters, secondPartyVoters)*v;
                value *= Math.pow((double)stats[0]/(double)total_stats, firstPartyVoters);
                value *= Math.pow((double)stats[1]/(double)total_stats, secondPartyVoters);
                value *= Math.pow((double)stats[2]/(double)total_stats, thirdPartyVoters);

                total += value;
            }
        }
        return total;
    }

    @Override
    public int getVote(int[] voteCounts, int votersRemaining, int[] payoffs,
            int[] totalPayoffs) {

        int bestVote = 0;
        double bestScore = 0.0;
        for (int vote = 0; vote < 3; vote++) {      
            voteCounts[vote]++;
            double score = expectedPayout(voteCounts, payoffs, votersRemaining);
            if (score > bestScore) {
                bestVote = vote;
                bestScore = score;
            }
            voteCounts[vote]--;
        }
        voteCounts[bestVote]++;
        this.voteCounts = voteCounts;

        return bestVote;

    }

    @Override
    public void receiveResults(int[] endVoteCounts, double result) {
        Integer[] indexes = {0, 1, 2};
        Arrays.sort(indexes, (i0, i1) -> voteCounts[i1] - voteCounts[i0]);
        for(int i = 0; i < 3; i++){
            data[indexes[0]][indexes[1]][i] += endVoteCounts[i] - voteCounts[i];
        }
    }
}

4

Bester überlebensfähiger Kandidat

Ziemlich stark überarbeitete Version meiner ursprünglichen Einreichung. Dieser eliminiert immer noch alle Kandidaten, die bei den verbleibenden abzugebenden Stimmen nicht gewinnen können, verwendet dann aber eine Strategie, die versucht, die relative Auszahlung zu optimieren, anstatt die absolute. Der erste Test besteht darin, das Verhältnis meiner persönlichen Auszahlung zur Gesamtauszahlung für jeden Kandidaten zu ermitteln und dort nach dem besten Wert zu suchen. Ich suche dann nach anderen Verhältnissen, die den besten sehr nahe kommen, und wenn eines eine geringere Gesamtauszahlung hat als das allerbeste, wähle ich stattdessen dieses aus. Hoffentlich wird dies dazu neigen, die Auszahlung der anderen Spieler zu drosseln, während meine einigermaßen hoch bleiben.

Dieser Bot macht in meinen eigenen Tests fast so gut wie das Original weiter, aber nicht ganz. Wir werden sehen müssen, wie es sich gegen das gesamte Feld verhält.

 /**
  * This bot picks the candidate with the highest relative payoff out of those
  * candidates who are not already mathematically eliminated.
  *
  * @author Ralph Marshall
  * @version 5/28/2015
  */

import java.util.List;
import java.util.ArrayList;


public class BestViableCandidate implements Player
{
    private static int NUM_CANDIDATES = 3;
    private int relativeCount = 0;
    private int relativeCountLowerTotal = 0;
    private int totalRuns;

    public BestViableCandidate(int r) {
        totalRuns = r;
    }

    public String getName() {
        return "BestViableCandidate (" + relativeCount + " from ratio, with " + relativeCountLowerTotal + " tie-breakers of " + totalRuns + " total runs)";
    }

    public int getVote(int [] voteCounts, int votersRemaining, int [] payoffs, int[] totalPayoffs) {

        int i, maxVoteSoFar = 0;

        // First we figure out the maximum possible number of votes each candidate would get
        // if every remaining bot voted for it
        int [] maxPossibleVotes = new int[NUM_CANDIDATES];
        for (i = 0; i < NUM_CANDIDATES; i++) {

            // The voters remaining does not include me, so we need to add one to it
            maxPossibleVotes[i] = voteCounts[i] + votersRemaining + 1;

            if (voteCounts[i] > maxVoteSoFar) {
                maxVoteSoFar = voteCounts[i];
            }
        }

        // Then we throw out anybody who cannot win even if they did get all remaining votes
        List<Integer> viableCandidates = new ArrayList<Integer>();
        for (i = 0; i < NUM_CANDIDATES; i++) {
            if (maxPossibleVotes[i] >= maxVoteSoFar) {
                viableCandidates.add(Integer.valueOf(i));
            }
        }

        // And of the remaining candidates we pick the one that has the personal highest payoff
        // relative to the payoff to the rest of the voters
        int maxCandidate = -1;
        double maxRelativePayoff = -1;
        int maxPayoff = -1;
        int minTotalPayoff = Integer.MAX_VALUE;

        int originalMaxCandidate = -1;
        double originalMaxPayoff = -1;

        double DELTA = 0.01;

        double tiebreakerCandidate = -1;

        for (Integer candidateIndex : viableCandidates) {
            double relativePayoff = (double) payoffs[candidateIndex] / (double) totalPayoffs[candidateIndex];
            if (maxRelativePayoff < 0 || relativePayoff - DELTA > maxRelativePayoff) {
                maxRelativePayoff = relativePayoff;
                maxCandidate = candidateIndex;

                maxPayoff = payoffs[candidateIndex];
                minTotalPayoff = totalPayoffs[candidateIndex];

            } else if (Math.abs(relativePayoff - maxRelativePayoff) < DELTA) {
                if (totalPayoffs[candidateIndex] < minTotalPayoff) {
                    tiebreakerCandidate = candidateIndex;

                    maxRelativePayoff = relativePayoff;
                    maxCandidate = candidateIndex;

                    maxPayoff = payoffs[candidateIndex];
                    minTotalPayoff = totalPayoffs[candidateIndex];

                }
            }

            if (payoffs[candidateIndex] > originalMaxPayoff) {
                originalMaxPayoff = payoffs[candidateIndex];
                originalMaxCandidate = candidateIndex;
            }
        }

        if (tiebreakerCandidate == maxCandidate) {
            relativeCountLowerTotal++;
        }

        if (originalMaxCandidate != maxCandidate) {
            /*                System.out.printf("%nSelecting candidate %d with relative payoff %f (%d/%d) instead of %d with relative payoff %f (%d/%d)%n",
                              maxCandidate, (double) payoffs[maxCandidate]/(double)totalPayoffs[maxCandidate], payoffs[maxCandidate], totalPayoffs[maxCandidate],
                              originalMaxCandidate, (double) payoffs[originalMaxCandidate]/(double)totalPayoffs[originalMaxCandidate], payoffs[originalMaxCandidate], totalPayoffs[originalMaxCandidate]);
            */
            relativeCount++;
        }

        return maxCandidate;
    }
}

1
Ist das nicht dasselbe wie CircumspectBot?
TheNumberOne

Ja, es stellt sich heraus, dass es so ist. Ich habe diesbezüglich oben in der Hauptfrage einen Kommentar abgegeben. Als ich anfing, es zu programmieren, wusste ich nicht genau, wie es funktionierte. Da CircumspectBot als erstes geschrieben wurde, sollte die Idee eindeutig gewürdigt werden.
Ralph Marshall

Ich denke, du vermisst das Ende deines Unterrichts.
Winston Ewert

Vielen Dank. Ich habe die letzte Zahnspange verloren. Nach dem, was da war, gab es keinen anderen Code.
Ralph Marshall

3

Optimist

Der Optimist ist sehr optimistisch und geht davon aus, dass die Hälfte der verbleibenden Wähler für den Kandidaten stimmen wird, der die beste Auszahlung erzielt.

import java.lang.Integer;
import java.lang.String;
import java.util.Arrays;
import java.util.Comparator;

public class Optimist implements Player
{
    public Optimist(int _) { }
    public String getName() { return "Optimist"; }
    public int getVote(int[] curVotes, int rem, final int[] payoffs, int[] _)
    {
        Integer[] opt = new Integer[] { 0, 1, 2 };
        Arrays.sort(opt, new Comparator<Integer>() { public int compare(Integer i1, Integer i2) { return payoffs[i1] > payoffs[i2] ? -1 : payoffs[i1] == payoffs[i2] ? 0 : 1; } });
        int a = curVotes[opt[0]], b = curVotes[opt[1]], c = curVotes[opt[2]];
        double rest = (double)rem / 4;
        if (b <= a + rest && c <= a + rest)
            return opt[0];
        else if (c <= b)
            return opt[1];
        else
            return opt[0];
    }
    public void receiveResults(int[] _, double __) { }
}

3

ABotDoNotForget

Sein Ziel ist einfach: Ermitteln der Gesamttendenzen anhand der Gesamtauszahlungen und Zählen der Anzahl der gewonnenen niedrigeren / mittleren / höheren Tendenzen. Er wird dann für denjenigen stimmen, der am wahrscheinlichsten gewinnt.

import java.util.ArrayList;

public class ABotDoNotForget implements Player
{
    private int nbElec;
    private int countElec=0;
    private int[] currPayoffs=new int[3];
    private int[] lmh=new int[3];
    private int[] wins=new int[3];

    public ABotDoNotForget(int nbElec)
    {
        this.nbElec=nbElec;
    }

    public String getName() {return "ABotDoNotForget";}

    public int getVote(int[] voteCounts, 
                        int votersRemaining, 
                        int[] payoffs,
                        int[] totalPayoffs) 
    {
        countElec++;
        System.arraycopy(totalPayoffs, 0, currPayoffs, 0, totalPayoffs.length);

        if(countElec<=nbElec/20&&countElec<=20)
        {
            int best=0;
            for(int i=1;i<payoffs.length;i++)
                if(payoffs[i]>=payoffs[best])
                    best=i;
            return best;
        }

        for(int i =1;i<totalPayoffs.length;i++)
        {
            if(totalPayoffs[i]<totalPayoffs[i-1])
            {
                int tmp= totalPayoffs[i];
                totalPayoffs[i]=totalPayoffs[i-1];
                totalPayoffs[i-1]=tmp;
                if(i==2&&totalPayoffs[i-1]<totalPayoffs[i-2]){
                    tmp= totalPayoffs[i-1];
                    totalPayoffs[i-1]=totalPayoffs[i-2];
                    totalPayoffs[i-2]=tmp;
                }
            }
        }
        lmhDist(currPayoffs,totalPayoffs);
        int best=0;
        for(int i=1;i<wins.length;i++)
            if(wins[i]>=wins[best]){
                best=i;
            }
        int ownH=0;
        for(int i=1;i<payoffs.length;i++)
            if(payoffs[i]>=payoffs[ownH])
                ownH=i;
        int ownM=0;
        for(int i=1;i<payoffs.length;i++)
            if(payoffs[i]>=payoffs[ownM]&&i!=ownH)
                ownM=i;

        int persBest=(voteCounts[ownH]-voteCounts[ownM]+(votersRemaining/3)>=0
                &&voteCounts[ownH]-voteCounts[best]<(votersRemaining/3))?ownH:ownM;

        return persBest;

    }

    public void receiveResults(int[] voteCounts, double result) 
    {
        int best=0,bestV=voteCounts[best];
        for(int i=1;i<voteCounts.length;i++)
            if(voteCounts[i]>=bestV){
                best=i;
                bestV=voteCounts[i];
            }
        wins[lmh[best]]++;

    }

    private void lmhDist(int[] a,int[] s)
    {
        ArrayList<Integer> al = new ArrayList<Integer>();
        al.add(a[0]);al.add(a[1]);al.add(a[2]);
        lmh[0]=al.indexOf(s[0]);
        lmh[1]=al.indexOf(s[1]);
        lmh[2]=al.indexOf(s[2]);

    }
}

Bearbeiten:

Einige Änderungen, die im Entscheidungsalgorithmus vorgenommen wurden, berücksichtigen nun seine beste Auszahlung. Sollte jetzt in der Lage sein, besser abzustimmen, wenn die aktuelle Verteilung ihn dazu brachte, für sein eigenes Niedrigeres zu stimmen, wenn andere für ihre höheren Auszahlungen stimmen.


3

Priamos

Priamos hasst Rekursion. Er schätzt die Wahrscheinlichkeit jedes verbleibenden Bots basierend auf den Gesamtauszahlungen und berechnet dann den besten Weg, um seine Auszahlungen zu maximieren.

public class Priam implements Player {
    private static double[] smallFactorials = {1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600,6227020800.,87178291200.,1307674368000.,20922789888000.,355687428096000.,6402373705728000.,121645100408832000.,2432902008176640000.};
    @Override
    public String getName() {
        return "Priam";
    }

    @Override
    public int getVote(int[] voteCounts, int votersRemaining, int[] payoffs,
            int[] totalPayoffs) {
        int totalPayoff = totalPayoffs[0] + totalPayoffs[1] + totalPayoffs[2];
        double p0 = ((double)totalPayoffs[0])/totalPayoff;
        double p1= ((double) totalPayoffs[1])/totalPayoff;
        double p2 = ((double)totalPayoffs[2])/totalPayoff;
        double[] expectedPayoffs = {0,0,0};
        for(int myChoice=0;myChoice<3;myChoice++)
        {
            for(int x0 = 0; x0 <= votersRemaining; x0++)
            {
                for(int x1 = 0; x1 <= (votersRemaining-x0); x1++)
                {
                    int x2 = votersRemaining - (x1 + x0);
                    double probability =
                            Math.pow(p0, x0)
                            * Math.pow(p1, x1)
                            * Math.pow(p2, x2)
                            * Choose(votersRemaining, x0)
                            * Choose(votersRemaining-x0, x1);
                    int votes0 = voteCounts[0];
                    int votes1 = voteCounts[1];
                    int votes2 = voteCounts[2];
                    if(myChoice == 0)
                    {
                        votes0++;
                    }
                    else if(myChoice==1)
                    {
                        votes1++;
                    }
                    else
                    {
                        votes2++;
                    }

                    votes0+=x0;
                    votes1+=x1;
                    votes2+=x2;
                    if(votes0>votes1 && votes0>votes2)
                    {
                        expectedPayoffs[myChoice]+=probability*payoffs[0];
                    }
                    else if(votes1>votes2)
                    {
                        expectedPayoffs[myChoice]+=probability*payoffs[1];
                    }
                    else
                    {
                        expectedPayoffs[myChoice]+=probability*payoffs[2];
                    }
                }
            }
        }
        if(expectedPayoffs[0]>expectedPayoffs[1] && expectedPayoffs[0]>expectedPayoffs[2])
        {
            return 0;
        }
        else if(expectedPayoffs[1]>expectedPayoffs[2])
        {
            return 1;
        }
        else
        {
            return 2;
        }
    }

    private long Choose(int source, int team) {
        return Factorial(source)/(Factorial(team)*Factorial(source-team));
    }

    private long Factorial(int n) {
        if(n<=20)
        {
            return (long)smallFactorials[n];
        }
        double d=(double)n;
        double part1 = Math.sqrt(2*Math.PI*d);
        double part2 = Math.pow(d/Math.E, d);
        return (long)Math.ceil(part1 * part2);
    }

    @Override
    public void receiveResults(int[] voteCounts, double result) {


    }
    public Priam(int i)
    {

    }
}

Viel schneller als Odysseus, da es keine Rekursion gibt (läuft in Zeit O (n ^ 2)) und eine Million Wahlen in ungefähr 15 Sekunden durchführen kann.


"Ich denke, dies ist der erste Bot, der den Total Payoffs-Parameter zu seinem eigenen Vorteil verwendet :)" Schauen Sie sich meinen Bot (ABotDoNotForget) an, er benutzt ihn bereits, sorry: D
Katenkyo

Sehr ähnlich zu meinem neuesten Bot, ExpectantBot, außer dass Sie totalPayoffs verwenden, um die Wahrscheinlichkeit vorherzusagen, und ich gehe davon aus, dass jede Abstimmung gleich wahrscheinlich ist. Ich bin gespannt, welche Strategie am besten funktioniert.
Winston Ewert

@ WinstonEwert Ich glaube, Sie haben die letzten drei Tests gewonnen, die ich gemacht habe.
Freitag,

Ich habe nur bemerkt , nur die similarity- ich eine Version des Odysseus zu machen versuchte , die nicht mehr als 10 Stunden in Anspruch nehmen haben 100 Wahlen laufen, so dass ich für Schleifen verwendet
euanjt

Um ehrlich zu sein, wurde ich von Odysseus inspiriert.
Winston Ewert

2

NoClueBot

NoClue kennt Java oder Mathe eigentlich nicht so gut, also hat er keine Ahnung, ob dieses Gewichtungsverhältnis-Ding ihm helfen wird, zu gewinnen. Aber er versucht es.

import java.lang.Math;
import java.util.*;
/**
 * Created by Admin on 5/27/2015.
 */
public class NoClueBot implements Player {

    public NoClueBot(int e) { }

    public String getName() {
        return "NoClueBot";
    }

    public int getVote(int [] voteCounts, int votersRemaining, int [] payoffs, int[] totalPayoffs) {
        double x = 0;
        int y = 0;
        for (int i=0; i<3; i++) {
            double t = (double) voteCounts[i] * ((double) payoffs[i]/(double) totalPayoffs[i]);
            if (x<t) {
                x = t;
                y = i; 
            }
        }
        return y;
    }

    public void receiveResults(int[] voteCounts, double result) { }
}


SomeClueBot

SomeClueBot wurde stillgelegt. verwendet tatsächlich Logik! benutzte er Logik, die sich als ineffizient herausstellte, und achtete stattdessen auf die Gesamtauszahlung, nicht auf seine eigene. verwendet wieder Logik! Aber er kommt mit all diesen Anhängern und Optimisten nicht gut zurecht, und sogar mit Leuten, die sich nicht darum kümmern! :)


ManchmalSecondBestBot

Grundsätzlich PersonalFavouriteBot, theoretisch verbessert.

import java.lang.Math;
/**
 * Created by Admin on 5/27/2015.
 */
public class SometimesSecondBestBot implements Player {
    public SometimesSecondBestBot(int e) { }

    public String getName() {
        return "SometimesSecondBestBot";
    }

    public int getVote(int [] voteCounts, int votersRemaining, int [] payoffs, int[] totalPayoffs) {
        int m = 0;
        int n = 0;
        for(int i = 1; i< 3; i++) {
            if(payoffs[i] > payoffs[m]) { n = m; m = i; }
        }
        return (voteCounts[n]>voteCounts[m]&&totalPayoffs[n]>totalPayoffs[m])||(voteCounts[m]+votersRemaining<voteCounts[n])||voteCounts[m]+votersRemaining<voteCounts[Math.min(3-n-m, 2)] ? n : m;
    }

    public void receiveResults(int[] voteCounts, double result) { }
}

1
Es sieht so aus, als ob Sie eine Zahl berechnen, die die größte von drei Gewichten ist, und dann diesen Wert mod 3 nehmen, um den besten Kandidaten auszuwählen. Ist das richtig und wenn ja, ist es im Grunde genommen keine Zufallszahl? Ich verstehe, dass du das "Mathe ist hart, Barbie" nennst, also bin ich mir nicht sicher, ob ich das Konzept habe.
Ralph Marshall

@RalphMarshall Ja, es ist im Grunde zufällig. Das wollte ich aber überhaupt nicht, ich habe nicht aufgepasst, haha. Behebt es jetzt.
Kade,

@PhiNotPhi Ich glaube, ich habe das Problem behoben, dass es jetzt außerhalb der Reichweite liegt. Und ja, ich bin nicht überrascht.
Kade

Mein Gott, das ist schlimm ... in meiner Verteidigungsarbeit war es heute extrem anstrengend.
Kade

2

Der Extremist

Stimmen Sie immer für den Kandidaten mit der niedrigsten Auszahlung

public class ExtremistBot implements Player
{
    public ExtremistBot(int e){}

    public void receiveResults(int[] voteCounts, double result){}

    public String getName(){
        return "ExtremistBot";
    }

    public int getVote(int [] voteCounts, int votersRemaining, int [] payoffs, int[] totalPayoffs)
    {
        int min = 0;
        for(int i = 1; i<payoffs.length; i++){
            if(payoffs[i] <payoffs[min]){
                min = i;
            }
        }
        return min;
    }
}

2

SmashAttemptByEquality

Das Ziel ist es, alle Kandidaten auszugleichen, dann SMASH! Alle anderen Bots der letzten Runde.
Dies ist ein destruktiver Algorithmus, der versucht, alle anderen auszuspionieren, um den Sieg einzufordern.

public class SmashAttemptByEquality implements Player {
    static private int elections;

    public SmashAttemptByEquality(int e) { 
        this.elections = e;
    }

    public String getName() {
        return "SmashAttemptByEquality (on " + String.valueOf(this.elections) + " elections)";
    }

    public int getVote(int[] voteCounts, int votersRemaining, int[] payoffs, int[] totalPayoffs) {

        //if there are no votes or it is a tie
        if(voteCounts.length == 0 || (voteCounts[0] == voteCounts[1] && voteCounts[1] == voteCounts[2]))
        {
            //let the system handle the (distributed?) randomness
            return 3;
        }

        //we want to win, so, lets not mess when there are no voters left
        if( votersRemaining > 0 )
        {
            //lets bring some equality!
            if( voteCounts[0] >= voteCounts[1] )
            {
                if(voteCounts[0] > voteCounts[2])
                {
                    return 2;
                }
                else
                {
                    return 0;
                }
            }
            else if( voteCounts[1] >= voteCounts[2] )
            {
                if(voteCounts[1] > voteCounts[0])
                {
                    return 0;
                }
                else
                {
                    return 1;
                }
            }
            else
            {
                return 0;
            }
        }
        else
        {
            //just play for the winner!
            if( voteCounts[0] >= voteCounts[1] )
            {
                if(voteCounts[0] > voteCounts[2])
                {
                    return 0;
                }
                else
                {
                    return 2;
                }
            }
            else if( voteCounts[1] >= voteCounts[2] )
            {
                if(voteCounts[1] > voteCounts[0])
                {
                    return 1;
                }
                else
                {
                    return 0;
                }
            }
            else
            {
                return 0;
            }
        }
    }

    public void receiveResults(int[] voteCounts, double result) { }
}

Beachten Sie, dass dies ungetestet ist !


2

Basic Bot

Basic Bot wählt nur die Kandidaten aus, die nicht ausgeschieden sind und die größte maximale Auszahlung dieser Kandidaten haben.

public class BasicBot implements Player {
    public BasicBot(int e) { }
    public String getName()
    {
        return "BasicBot";
    }
    public static int getMax(int[] inputArray){ 
    int maxValue = inputArray[0]; 
    for(int i=1;i < inputArray.length;i++){ 
      if(inputArray[i] > maxValue){ 
         maxValue = inputArray[i]; 
      } 
    } 
    return maxValue; 
   }
    public int getVote(int [] voteCounts, int votersRemaining, int [] payoffs, int[] totalPayoffs)
    {
        // Check for Eliminated Candidates
        int eliminated0 = 0;
        int eliminated1 = 0;
        int eliminated2 = 0;
        if( ((voteCounts[0] + votersRemaining) < voteCounts[1]) || ((voteCounts[0] + votersRemaining) < voteCounts[2]))
        {
            eliminated0 = 1;
        }
        if( ((voteCounts[1] + votersRemaining) < voteCounts[0]) || ((voteCounts[1] + votersRemaining) < voteCounts[2]))
        {
            eliminated1 = 1;
        }
        if( ((voteCounts[2] + votersRemaining) < voteCounts[0]) || ((voteCounts[2] + votersRemaining) < voteCounts[1]))
        {
            eliminated2 = 1;
        }
        // Choose the Candidates that is not elimated with the largest payoff
        if ((payoffs[0] == getMax(payoffs)) && eliminated0 == 0)
            return 0
        else if ((payoffs[1] == getMax(payoffs)) && eliminated1 == 0)
            return 1
        else
            return 2

    }

    public void receiveResults(int[] voteCounts, double result)
    {
    }

}

2

Kellys Liebling

Ich habe mit CircumspectBot angefangen, aber es ist nicht mehr viel übrig. Schätzt die Wahrscheinlichkeitsverteilung der verbleibenden Stimmen auf eine Art langweilige Weise und trifft dann die Wahl, die sein eigenes Protokolldienstprogramm maximiert (Kelly Criterion). Nicht der Schnellste, aber innerhalb des Ballparks einiger der anderen. Es ist auch ziemlich wettbewerbsfähig mit dem Feld (wie es aussah, als ich anfing, daran zu arbeiten und die anderen Bots herunter zu laden).

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Map;
import java.util.HashMap;

public class KellysFavorite implements Player {
    private ArrayList<Double> cache = new ArrayList<Double>();

    public KellysFavorite(int elections) {
        cache.add(0.0);
        double v = 0.0;
        for(int i=1; i<1000; i++) {
            v += Math.log(i);
            cache.add(v);
        }
    }

    @Override
    public String getName() {
        return "Kelly's Favorite";
    }

    private double factln(int n) {
        return cache.get(n);
    }

    private  double binll(int x, int n, double p)
    {
        double ll = 0.0;
        ll += ((double)x)*Math.log(p);
        ll += ((double)(n - x))*Math.log(1.0 - p);
        ll += factln(n) - factln(x) - factln(n-x);
        return ll;
    }

    public  double logAdd(double logX, double logY) {
        // 1. make X the max
        if (logY > logX) {
            double temp = logX;
            logX = logY;
            logY = temp;
        }
        // 2. now X is bigger
        if (logX == Double.NEGATIVE_INFINITY) {
            return logX;
        }
        // 3. how far "down" (think decibels) is logY from logX?
        //    if it's really small (20 orders of magnitude smaller), then ignore
        double negDiff = logY - logX;
        if (negDiff < -20) {
            return logX;
        }
        // 4. otherwise use some nice algebra to stay in the log domain
        //    (except for negDiff)
        return logX + java.lang.Math.log(1.0 + java.lang.Math.exp(negDiff));
    }

    @Override
    public int getVote(int[] voteCounts,
                       int votersRemaining,
                       int[] payoffs,
                       int[] totalPayoffs) {
        int totalviable = 0;
        boolean[] viable = { false, false, false };
        int topVote = Arrays.stream(voteCounts).max().getAsInt();
        for (int index = 0; index < 3; index++) {
            if (voteCounts[index] + votersRemaining + 1 >= topVote) {
                viable[index] = true;
                totalviable += 1;
            }
        }

        // if only one candidate remains viable, vote for them
        if(totalviable == 1) {
            for(int index = 0; index < 3; index++)
                if(viable[index])
                    return index;
        } else {
            double votelikelihoods[] = { 0.0, 0.0, 0.0 };
            double totalweight = 0.0;
            for(int index=0; index<3; index++) {
                if(!viable[index])
                    votelikelihoods[index] -= 10.0;
                else if(voteCounts[index] < topVote)
                    votelikelihoods[index] -= 0.1;

                totalweight += Math.exp(votelikelihoods[index]);
            }

            double probs[] = new double[3];
            for(int index=0; index<3; index++) {
                probs[index] = Math.exp(votelikelihoods[index]) / totalweight;
            }

            double[] utilities = {0,0,0};
            for(int mychoice=0; mychoice<3; mychoice++) {
                boolean seen[] = { false, false, false };
                double likelihoods[] = { Double.NEGATIVE_INFINITY,
                                         Double.NEGATIVE_INFINITY,
                                         Double.NEGATIVE_INFINITY };
                int[] localVoteCounts = { voteCounts[0] + (mychoice==0?1:0),
                                          voteCounts[1] + (mychoice==1?1:0),
                                          voteCounts[2] + (mychoice==2?1:0) };
                for(int iVotes=0; iVotes<=votersRemaining; iVotes++)
                    for(int jVotes=0; jVotes<=(votersRemaining-iVotes); jVotes++) {
                        int kVotes = votersRemaining - iVotes - jVotes;

                        int a = localVoteCounts[0] + iVotes;
                        int b = localVoteCounts[1] + jVotes;
                        int c = localVoteCounts[2] + kVotes;
                        int wincount = Math.max(a, Math.max(b, c));
                        int winners = 0;
                        if(a>=wincount) { winners += 1; }
                        if(b>=wincount) { winners += 1; }
                        if(c>=wincount) { winners += 1; }

                        double likelihood =
                            binll(iVotes, votersRemaining, probs[0])
                            + binll(jVotes, votersRemaining-iVotes, probs[1] / (probs[1] + probs[2]));

                        likelihood += Math.log(1.0/winners);

                        if(a>=wincount) {
                            if(seen[0])
                                likelihoods[0] = logAdd(likelihoods[0],
                                                        likelihood);
                            else
                                likelihoods[0] = likelihood;
                            seen[0] = true;
                        }
                        if(b>=wincount) {
                            if(seen[1])
                                likelihoods[1] = logAdd(likelihoods[1],
                                                        likelihood);
                            else
                                likelihoods[1] = likelihood;
                            seen[1] = true;
                        }
                        if(c>=wincount) {
                            if(seen[2])
                                likelihoods[2] = logAdd(likelihoods[2],
                                                        likelihood);
                            else
                                likelihoods[2] = likelihood;
                            seen[2] = true;
                        }

                    }

                for(int index=0; index<3; index++)
                    utilities[mychoice] += Math.exp(likelihoods[index]) * Math.log((double)payoffs[index]);
            }

            double maxutility = Math.max(utilities[0], Math.max(utilities[1], utilities[2]));
            int choice = 0;
            for(int index=0; index<3; index++)
                if(utilities[index]>=maxutility)
                    choice = index;
            return choice;
        }

        throw new InternalError();
    }

    @Override
    public void receiveResults(int[] voteCounts, double result) {

    }

}

Auch verfügbar unter https://gist.github.com/jkominek/dae0b3158dcd253e09e5, falls dies einfacher ist.


2

KommunismusBot

CommunismBot meint, wir sollten uns alle verstehen und den Kandidaten auswählen, der für alle das Beste ist.

public class CommunismBot implements Player
{
    Random rnd;
    String name;
    public CommunismBot(int e) {
        rnd = new Random(); 
        name = "CommunismBot" + rnd.nextInt(1000);
    }

    public String getName()
    {
        return name;
    }

    public int getVote(int [] voteCounts, int votersRemaining, int [] payoffs, int[] totalPayoffs)
    {
        int maxloc = 0;
        for(int i = 1; i< 3; i++)
        {
            if(totalPayoffs[i] > totalPayoffs[maxloc])
            {
                maxloc = i;
            }
        }
        return maxloc;
    }

    public void receiveResults(int[] voteCounts, double result) { }
}

Hatebot

Hatebot wählt immer den besten Kandidaten aus. Es sei denn, sie sind eine schmutzig-stinkende Party 1. Diese Jungs sind schrecklich.

import java.util.Random;


public class HateBot implements Player
{
    Random rnd;
    String name;
    public HateBot(int e) {
        rnd = new Random(); 
        name = "HateBot" + rnd.nextInt(1000); }

    public String getName()
    {
        return name;
    }

    public int getVote(int [] voteCounts, int votersRemaining, int [] payoffs, int[] totalPayoffs)
    {
        if(payoffs[0]>payoffs[2])
            return 0;
        else
            return 2;
    }

    public void receiveResults(int[] voteCounts, double result) { }
}

StrategicBot

StrategicBot stimmt für den besten Kandidaten ab, vorausgesetzt, sie liegen innerhalb einer Standardabweichung vom nächstbesten Kandidaten, gemessen an der Anzahl der verbleibenden Wähler.

import java.util.Random;

public class StrategicBot implements Player
{
    Random rnd;
    String name;
    public StrategicBot(int e) {
        rnd = new Random(); 
        name = "StrategicBot" + rnd.nextInt(1000);

    }

    public String getName()
    {
        return name;
    }

    public int getVote(int [] voteCounts, int votersRemaining, int [] payoffs, int[] totalPayoffs)
    {
        double margin = 9.0*votersRemaining/9;
        int maxloc = 0;
        boolean noLead=false;
        for(int i = 1; i< 3; i++)
        {
            for(int j = 1; j < 3; j++)
            {
                if(payoffs[j] + margin > payoffs[i])
                    noLead=true;
            }
            if(payoffs[i] > payoffs[maxloc] && noLead)
            {
                maxloc = i;
            }
            noLead=false;
        }
        return maxloc;
    }

    public void receiveResults(int[] voteCounts, double result) { }
}

2

ExpectorBot

Versucht vorherzusagen, wie alle anderen Bots abstimmen, indem die durchschnittliche Auszahlung für die anderen berechnet wird. Standardstimmen für die beste Auszahlung, aber Stimmen für die zweitbeste, wenn mehr Stimmen erwartet werden als die besten, eine überdurchschnittliche Auszahlung für mich und die schlechteste Auszahlung hat eine Chance, diese Sache zu gewinnen.

import java.util.Arrays;

public class ExpectorBot implements Player
{
    class Votee
    {
        int index;
        int payoff;
        float avgPayoff;
        float expectedVotes;
    }

    public ExpectorBot( final int e )
    {

    }

    @Override
    public String getName()
    {
        return "ExpectorBot";
    }

    @Override
    public int getVote( final int[] voteCounts, final int votersRemaining, final int[] payoffs, final int[] totalPayoffs )
    {
        final int otherVoters = Arrays.stream( voteCounts ).sum() + votersRemaining;
        final Votee[] v = createVotees( voteCounts, otherVoters, votersRemaining, payoffs, totalPayoffs );

        final Votee best = v[ 0 ]; // Most Payoff
        final Votee second = v[ 1 ];
        final Votee worst = v[ 2 ];

        int voteFor = best.index;

        if( ( second.expectedVotes >= best.expectedVotes + 1 ) // Second has more votes than Best even after I vote
                && ( second.payoff >= second.avgPayoff ) // Second payoff better than average for the others
                && ( worst.expectedVotes >= best.expectedVotes + 0.5f ) ) // Worst has a chance to win
        {
            voteFor = second.index;
        }

        return voteFor;
    }

    private Votee[] createVotees( final int[] voteCounts, final int otherVoters, final int votersRemaining, final int[] payoffs, final int[] totalPayoffs )
    {
        final Votee[] v = new Votee[ 3 ];

        for( int i = 0; i < 3; ++i )
        {
            v[ i ] = new Votee();
            v[ i ].index = i;
            v[ i ].payoff = payoffs[ i ];

            // This is the average payoff for other Players from this Votee
            v[ i ].avgPayoff = (float)( totalPayoffs[ i ] - payoffs[ i ] ) / otherVoters;

            // The expected number of Votes he will get if everyone votes for biggest payoff
            v[ i ].expectedVotes = voteCounts[ i ] + ( votersRemaining * v[ i ].avgPayoff / 100.0f );
        }

        Arrays.sort( v, ( o1, o2 ) -> o2.payoff - o1.payoff );

        return v;
    }

    @Override
    public void receiveResults( final int[] voteCounts, final double result )
    {

    }
}

1

LockBot

Nur ein einsamer Philosoph, der nach seinem "e" sucht ...

//He thinks he's the father of democracy, but something's missing....
public class LockBot implements Player {

public LockBot(int i) {
    //One election, 10000000, what's the difference?
}

@Override
public String getName() {
    return "LockBot";
}

@Override
public int getVote(int[] voteCounts, int votersRemaining, int[] payoffs,
        int[] totalPayoffs) {

    double totalPlayers = voteCounts.length + votersRemaining;
    double totalPayoff = totalPlayers * 100;

    //adjust total payoffs to ignore my own
    for( int i = 0; i < totalPayoffs.length; i++){
        totalPayoffs[i] -= payoffs[i];
    }

    //Votes are probably proportional to payoffs
    //So lets just find the highest weight
    double[] expectedOutcome = new double[3];
    for(int i = 0; i< expectedOutcome.length; i++){
        expectedOutcome[i] = (totalPayoffs[i] / totalPayoff) * payoffs[i];
    }

    //Find the highest
    int choice = 0;
    if(expectedOutcome[1] > expectedOutcome[choice]){
        choice = 1;
    }
    if(expectedOutcome[2] > expectedOutcome[choice]){
        choice = 2;
    }




    return choice;
}

@Override
public void receiveResults(int[] voteCounts, double result) {
    // TODO Auto-generated method stub

}

}

0

WinLose

Wenn du gewinnst, verliere ich! So einfach. Dieser Bot wählt also den, den er mag und den alle anderen nicht mögen.

public class WinLose implements Player
{
    public WinLose(int e) { }

    public String getName()
    {
        return "WinLose";
    }
    public int getVote(int [] voteCounts, int votersRemaining, int [] payoffs, int[] totalPayoffs)
    {
        int max = 0;
        for(int i = 1; i< 3; i++)
        {
            if(10*payoffs[i]-totalPayoffs[i] > 10*payoffs[max]-totalPayoffs[max])
            {
                max = i;
            }
        }
        return max;
    }

    public void receiveResults(int[] voteCounts, double result)
    {

    }
}
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.