Programmieren Sie einen Rennwagen


36

Herzlichen Glückwunsch an @kuroineko. Gewinnt das Kopfgeld für exzellentes Tempo (672 Züge) auf der Gauntlet-Strecke.

ANFÜHRER: * Nimi erzielt eine leichte 2129. Andere Einträge sind größer, zeigen aber eine ernsthafte Geschwindigkeit.

* Der Anführer kann sich aufgrund späterer Einträge ändern.

Ihre Aufgabe ist es, ein kleines Programm zu schreiben, das einen Rennwagen schnell fahren kann.

Regeln

Ihr Programm liest ein Bild des Titels ein. Sie können Ihr Auto auf einem beliebigen gelben Pixel starten und müssen zum Abschluss ein beliebiges schwarzes Pixel kreuzen. Der Weg Ihres Autos darf nur auf der grauen Spur ((c, c, c) mit 30 <= c <= 220) verlaufen.

Ihr Auto bewegt sich in jeder Kurve in einer geraden Linie mit der Geschwindigkeit v, die sich aus den ganzen Zahlen vx und vy zusammensetzt (beginnend mit (0,0)). Zu Beginn jeder Runde kann Ihr Programm vx und vy so ändern, dass:

abs(vx2-vx1) + abs(vy2-vy1) <= 15

Aktualisieren: maximale Beschleunigung wurde auf 15 erhöht.

Ihr Programm zeichnet dann eine gerade Linie von Ihrem aktuellen Standort zu (Standort + v) in Weiß mit einem blauen Punkt am Anfang. Wenn ein Pixel unter dieser Linie schwarz ist, haben Sie das Rennen beendet. Andernfalls können Sie mit der nächsten Abbiegung fortfahren, wenn alle Pixel unter dieser Linie grau oder gelb sind.

Ihr Programm muss das Titelbild mit dem Pfad in Weiß und Blau ausgeben.

Zusätzliche Ausgabe (hinzugefügt am 15.01.2015):

Wenn Sie um den Gewinn oder den Bonus kämpfen möchten , sollte Ihr Programm auch Ihre Punkteliste (die blauen Punkte) für die Stadt bzw. den Handschuh ausgeben. Fügen Sie Ihrer Antwort die Liste der Punkte bei (zur Verifizierung). Die Punkte sollten folgendermaßen aussehen: (x0,y0), (x1,y1), ... (xn,yn). Sie können Leerzeichen frei verwenden, einschließlich'\n' Zeichen verwenden, um die Daten auf der Seite anzupassen.

Sie können das Lesen und Schreiben von Bildern von Drittanbietern, Strichzeichnen und Pixelzugriffsbibliotheken verwenden. Pfadfindungsbibliotheken können nicht verwendet werden. Wenn Sie möchten, können Sie die PNG-Bilder bei Bedarf in andere Grafikformate (wie GIF, JPG, BMP) konvertieren.

Ein paar Spuren zum Weiterfahren

Ein einfacher Weg, um anzufangen:

Einfache Spur

Eine Rennstrecke:

Rennstrecke

Ein Hindernisparcours:

Hindernisstrecke

Die Stadt:

Die Stadt

Nightmare Track: The Gauntlet (wenn die anderen zu einfach sind)

Der Handschuh

Wertung

Ihre Punktzahl basiert auf Ihrem Ergebnis auf der City-Strecke. Punkte entsprechen Ihrer Programmlänge in Bytes plus 10 Punkte für jede Runde, die Ihr Rennwagen bis zum Ende absolviert hat. Die niedrigste Punktzahl gewinnt. Bitte fügen Sie Ihrer Antwort Ihr City-Streckenbild bei - wir möchten Ihren Fahrstil sehen.

Bitte verwenden Sie einen Titel für Ihre Antwort im Format:

<Racing Driver or Team Name> <Language> <Score> Beispiel: Slowpoke Perl 5329

Ihr Programm muss in der Lage sein, auf einem beliebigen Titelbild zu fahren, wobei die obigen Regeln zu beachten sind. Sie dürfen weder den optimalen Pfad noch Parameter der Teststrecken fest codieren. Es gelten die anderen Standardlücken.

Ähnliche Herausforderungen

Dies ist ein ähnliches Puzzle wie das von Martin: To Vectory! - Der Vector Racing Grand Prix . Dieses Puzzle hat eine Reihe von Unterschieden:

  • Das Durchfahren von Wänden ist nicht gestattet.
  • Sie können unbegrenzten Speicher und Zeit verwenden.
  • Sie müssen nicht den Code eines anderen Benutzers auf Ihrem Computer ausführen.
  • Sie müssen nur ein Bild herunterladen.
  • Die Größe Ihres Codes zählt bei der Bewertung. Kleiner ist besser.
  • Sie zeichnen Ihre Lösung auf dem Gleisbild.
  • Mit einem Malpaket können Sie ganz einfach eigene Spuren erstellen.
  • Die höhere Auflösung fördert ein realistischeres Bremsen und Kurvenfahren.
  • Eine Beschleunigung von 15 schafft ungefähr 450 Möglichkeiten pro Umdrehung. Dies macht BFS weniger machbar und ermutigt zu neuen interessanten Algorithmen.

Dieses Rätsel soll eine neue Runde von Programmierern dazu anregen, Lösungen auszuprobieren, und es Programmierern mit alten Lösungen ermöglichen, diese in der neuen Umgebung zu überdenken.


@xnicht genug duplizieren, aber nicht perfekt, muss ich hinzufügen: Diese Frage verwendet grafische Eingaben (die zu viel größeren Boards führen) und ermöglicht mehr Beschleunigung. Die BFS-Implementierung würde hier wahrscheinlich eine Zeitüberschreitung verursachen. Es gibt auch keine Gegner.
John Dvorak

Diese Herausforderung verbietet auch das Tunneln durch Wände . Was mich zu meiner Frage bringt: Welchen Strichzeichnungsalgorithmus müssen wir verwenden? Wenn wir hier Spielraum haben, wie viel? Ich denke, dies könnte etwas missbräuchlich sein - besonders wenn "handgezeichnete" "Linien" erlaubt sind.
John Dvorak

Ich mag Martins Herausforderung, aber ich wollte hier etwas anderes. Es gibt einen Code-Golf-Aspekt, der kleine clevere Algorithmen belohnt. Es gibt auch grafische Ausgaben, die den Wettbewerb anregen. Ich hoffe, dass diese Frage zulässig ist - ich freue mich auf einige kluge Antworten.
Logic Knight

2
Wenn sich herausstellt, dass das Duplizieren kein Problem darstellt, sollten Sie meiner Meinung nach viel mehr Tracks hinzufügen, mit denen Sie beurteilen können. Es gibt viele Hardcodierungsstufen. Dies macht es schwierig, die Grenze zwischen einem Programm, das für eine Karte mit allgemeinen Linien "Straßen" optimiert ist, und einem Programm zu ziehen, das stark auf diese Karte zugeschnitten ist.
6.

1
Ich hätte dies in der Frage deutlich machen sollen, aber Sie können beliebige Bibliotheken von Drittanbietern zum Lesen und Schreiben von Bildern, Zeichnen von Linien und Punkten usw. verwenden. Möglicherweise verwenden Sie jedoch keine Bibliothek zum Auffinden von Pfaden. Wie bei allen Fragen, die dem Golfspiel ähneln, leiden auch ausführliche Sprachen (wie Java) darunter, aber Sie können zufrieden sein, wenn Sie der Beste in Ihrer Sprachgruppe sind.
Logic Knight

Antworten:


6

TS # 1 - Haskell - 1699 + 430 = 2129

Tutu Geschwister # 1

Sehr ähnlich wie der ursprüngliche Tutu-Renner, mit der Ausnahme, dass er eine Dicke von 3 für den aufgeblähten Pfad verwendet und das 2. A * (Geschwindigkeits-Positionsraum) mit einer konstanten Heuristik von übereinstimmt 1. Das Eingabebild wird nicht mehr als Kommandozeilenargument übergeben, es muss benannt werden i. Der Name des Ausgabebildes lautet o. Das Programm druckt die berechneten Punkte auf dem Pfad als eine Liste von x, y-Paaren (die ursprüngliche Ausgabe ist eine einzelne Zeile):

[(6,7),(20,6),(49,5),(92,5),(124,4),(141,3),(148,7),(155,26),(172,49),
(189,70),(191,91),(179,111),(174,124),(184,137),(209,150),(244,168),
(279,171),(302,176),(325,196),(350,221),(367,239),(369,257),(360,272),
(363,284),(381,296),(408,314),(433,329),(458,329),(480,318),(492,312),
(504,321),(519,341),(526,364),(523,392),(514,416),(507,427),(511,435),
(529,442),(558,445),(581,456),(592,470),(592,488),(592,513),(606,537)] 

Ich könnte eine Menge Bytes sparen, wenn ich anfange, die gesamte Karte zu entfernen und Datenstrukturen festzulegen und sie durch einfache verknüpfte Listen zu ersetzen. Allein die beiden Import-Anweisungen würden 60 Bytes einsparen. Es würde jedoch das Programm verlangsamen, so dass das Warten auf ein Ergebnis purer Schmerz ist. Diese Version benötigt für The City mehr als 45 Minuten im Vergleich zu den 7er-Versionen des Originals. Ich werde hier aufhören, Bytes zu tauschen, um Geschwindigkeit auszuführen.

import Codec.Picture
import Codec.Picture.RGBA8
import Codec.Picture.Canvas
import qualified Data.Map as M
import qualified Data.Set as S
import qualified Data.PSQueue as Q
m(a,b)(c,d)|a==c||b==d=2|t=3;n=Nothing;q=PixelRGBA8;s=abs;t=1<2;u=signum;z=255;fl=S.fromList;(#)=M.insert
main=do
 i<-readImageRGBA8"i";let(Right c)=imageToCanvas i;j=canvasWidth c-1;gY=canvasHeight c-1;v(x,y)|all(==0)[r,g,b]=3|r+g==510&&b==0=2|r==g&&r==b&&29<r&&r<221=0|t=1 where(PixelRGBA8 r g b _)=getColor x y c
 let s':_=[(x,y)|x<-[0..j],y<-[0..gY],v(x,y)==2];n8 p@(x,y)=filter((/=1).v)$if y*x==0||y==gY||x==j then[p]else[(a,b)|a<-[x-1..x+1],b<-[y-1..y+1],a/=x||b/=y];r=s':aS(fl.n8)m((==3).v)s';f=concatMap n8;p=head r;w=map fst$(p,(0,0)):aS(\((a,b),(h,i))->fl[(e,(h+j,i+k))|j<-[-15..15],k<-[s j-15..15-s j],not$all(==0)[j,k,h,i],let e=(a+h+j,b+i+k),S.member e(fl$f$f$f r),all((/=1).v)(br(a,b)e)])(\_ _->99)((==last r).fst)(p,(0,0))
 writePng"o"$canvasToImage$foldl(\e((a,b),(c,d))->setColor a b(q 0 0 z z)$drawLine a b c d(q z z z z)e)c(zip w(tail w));print w
br q@(i,j)r@(k,l)=w q$f`div`2where w p@(y,x)e|p==r=[p]|e-o<0=p:w(y+g,x+h)(e-o+f)|t=p:w(y+m,x+n)(e-o);a=s$l-j;b=s$k-i;h=u$l-j;g=u$k-i;(n,m,o,f)|a>b=(h,0,b,a)|t=(0,g,a,b)
data A a c=A{a::S.Set a,h::Q.PSQ a c,k::M.Map a c,p::M.Map a a,w::Maybe a}
aS g d o u=b$w s where b(Just j)=(reverse$takeWhile(/=u)$iterate(p s M.!)j);s=l$A S.empty(Q.singleton u 0)(M.singleton u 0)M.empty n;i x y v s=s{p=y#x$p s,k=y#v$k s,h=Q.insert y(v+1)$h s};l s=b$Q.minView$h s where b(Just(x Q.:->_,w'))|o x=s{w=Just x}|t=l$foldl(r x)(s{h=w',a=S.insert x(a s)})$S.toList$g x S.\\a s;b _=s;r x s y=b$Q.lookup y$h s where v=k s M.!x+d x y;b Nothing=i x y v s;b _|v<k s M.!y=i x y v s|t=s

Der Code benötigt zum Kompilieren das Flag -XNoMonomorphismRestriction.

Die Stadt - TS # 1 - 43 Stufen TS # 1 - 43 Schritte


Acc Limit geprüft. Durchschn. Beschleunigung = 13,627, auch in der Nähe der maximalen Beschleunigung, Kurvenfahrt und Bremsung.
Logic Knight

Ein weiterer Anreiz für mich, auf C ++ umzusteigen. Eines Tages wird rohe Gewalt herrschen. Ich weiß es wird!

12

FirstRacer Java (5825 + 305 * 10 = 8875)

Nur um einen Anfang zu machen. Benötigt 305 Segmente auf Stadt.

Dieses Java-Programm führt folgende Pipelines aus:

  1. Lesen Sie das Bild
  2. A * (Ein Stern)
  • 2.1 Erstellen Sie die A * -Suchlandschaft.
  • 2.2. Verfolge zurück und suche nur nach den besten * direkten * 8 Nachbarzellen (N, S, E, W, NE, NW, SE, SW). Dies findet die kürzeste Spur t0 pixelweise.
  1. Bleiben Sie auf t0 und optimieren Sie die Geschwindigkeit, indem Sie Pixel entfernen. Das Erfüllen der Bedingung darf niemals schneller als 7 sein (dies bedeutet, dass mindestens jedes 7. Pixel beibehalten wird).
  2. Zeichnen Sie die Spur in das Bild
  3. Zeigen Sie das resultierende Bild.
package race;

import java.awt.Color;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.Point;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Vector;

import javax.imageio.ImageIO;
import javax.swing.JFrame;
import javax.swing.WindowConstants;

public class AStar {

    private static BufferedImage img;
    private static int Width;
    private static int Height;
    private static int[][] cost;
    private static int best=Integer.MAX_VALUE;
    private static Point pBest;

    public static void main(String[] args) throws IOException {
        String file = "Q46YG.png";
        img = read(file);
        Width=img.getWidth();
        Height=img.getHeight();

        Vector<Point> track = astar();
        track = optimize(track);
        draw(track);
        System.out.println(10 * track.size());

        JFrame frame = new JFrame(file) {
            public void paint(Graphics g) {
                setSize(Width+17, Height+30+10);
                g.drawImage(img,8,30,null);
            }
        };
        frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
        frame.setVisible(true);
    }

    private static Vector<Point> optimize(Vector<Point> track) {
        Vector<Point> opt=new Vector<Point>();
        Point p0 = track.get(0);
        Point p1 = track.get(1);
        int v=0;
        opt.add(p0);
        int vx0=p1.x-p0.x, vy0=p1.y-p0.y;
        for (int i = 2; i < track.size(); i++) {
            Point p = track.get(i);
            if (v<7 && vx0==p.x-p1.x && vy0==p.y-p1.y) {
                v++;
            } else {
                v=0;
                opt.add(p1);
                vx0=p.x-p1.x;
                vy0=p.y-p1.y;
            }
            p1=p;
        }
        opt.add(p1);
        return opt;
    }

    private static void draw(Vector<Point> track) {
        Graphics2D g = img.createGraphics();
        Point p0 = track.get(0);
        for (int i = 1; i < track.size(); i++) {
            Point p1 = track.get(i);
            g.setColor(Color.WHITE);
            g.drawLine(p0.x, p0.y, p1.x, p1.y);
            img.setRGB(p0.x, p0.y, 0xff0000ff);
            img.setRGB(p1.x, p1.y, 0xff0000ff);
            p0=p1;
        }
    }

    private static Vector<Point> astar() {
        Vector<Point> v0=findStart();
        for(int i=0; ; i++) {
            Vector<Point> v1=next(v0);
            if (v1.size()==0) break;
            v0=v1;
        }
        Vector<Point> track=new Vector<Point>();
        Point p0 = pBest;
        int x0=p0.x, y0=p0.y;
        int c0=cost[x0][y0];
        while(true) {
            int x=x0, y=y0;
            track.add(0, new Point(x, y));
            for (int x1 = x-1; x1 <= x+1; x1++) {
                for (int y1 = y-1; y1 <= y+1; y1++) {
                    int i1=getInfo(x1, y1);
                    if ((i1&2)==2) {
                        int c=cost[x1][y1];
                        if (c0>c) {
                            c0=c;
                            x0=x1;
                            y0=y1;
                        }
                    }
                }
            }
            if(x0==x &&y0==y) break;
        }
        return track;
    }

    private static Vector<Point> next(Vector<Point> v0) {
        Vector<Point> v1=new Vector<Point>();
        for (Point p0 : v0) {
            int x=p0.x, y=p0.y;
            int c0=cost[x][y];
            for (int x1 = x-1; x1 <= x+1; x1++) {
                for (int y1 = y-1; y1 <= y+1; y1++) {
                    int i1=getInfo(x1, y1);
                    if ((i1&2)==2) {
                        int c1=c0+1414;
                        if (x1==x || y1==y) {
                            c1=c0+1000;
                        }
                        int c=cost[x1][y1];
                        if (c1<c) {
                            cost[x1][y1]=c1;
                            Point p1=new Point(x1, y1);
                            v1.add(p1);
                            if (i1==3) {
                                if (best>c1) {
                                    best=c1;
                                    pBest=p1;
                                }
                            }
                        }
                    }
                }
            }

        }
        return v1;
    }

    private static Vector<Point> findStart() {
        cost=new int[Width][Height];
        Vector<Point> v=new Vector<Point>();
        for (int i = 0; i < Width; i++) {
            for (int j = 0; j < Height; j++) {
                if (getInfo(i,j)==1) {
                    cost[i][j]=0;
                    v.add(new Point(i, j));
                } else {
                    cost[i][j]=Integer.MAX_VALUE;
                    pBest=new Point(i, j);
                }
            }
        }
        return v;
    }

    /**
     * 1: You can start your car on any yellow pixel, 
     * 3: and you must finish by crossing any black pixel. 
     * 2: The path of your car must be only on the grey ((c,c,c) where 30 <= c <= 220) track.
     * 0: else
     * 
     * @param x
     * @param y
     * @return
     */
    private static int getInfo(int x, int y) {
        if (x<0 || x>=Width || y<0 || y>=Height) return 0;
        int rgb = img.getRGB(x, y);
        int c=0;
        switch (rgb) {
        case 0xffffff00: c=1; break;
        case 0xff000000: c=3; break;
        default: 
            int r=0xff&(rgb>>16);
            int g=0xff&(rgb>> 8);
            int b=0xff&(rgb>> 0);
            if (30<=r&&r<=220&&r==g&&g==b) c=2;
        }
        return c;
    }

    private static BufferedImage read(String file) throws IOException {
        File img = new File("./resources/"+file);
        BufferedImage in = ImageIO.read(img);
        return in;
    }

}

Die Stadt

Ich denke, die Rennstrecke gibt Ihnen einen besseren Eindruck davon, wie FirstRacer funktioniert. Rennstrecke


Das, was Ihr Auto in der Stadt in der Mitte des unteren Blocks macht, scheint nicht optimal zu sein.
John Dvorak

3
Trotz des einfachen Algorithmus scheint Ihr Auto eine gute Linie durch die Kurven zu ziehen. Nun, wenn Sie nur den ersten Gang einlegen können ...
Logic Knight

Ich berechne Ihre anfängliche Punktzahl zu 5825 + 305 * 10 = 8875.
Logic Knight

@ JanDvorak Ja, diese Version ist eine Art Dump.
Bob Genom

@CarpetPython In der nächsten Version (falls in Frage gestellt) wird das Zahnrad verwendet, um nur 276 (oder weniger) Umdrehungen zu haben. Vielen Dank für die Berechnung meiner Punktzahl.
Bob Genom

11

pighead PHP (5950 + 470 = 6420)

Noch eine weitere (mit Pigheading versehene) BFS-Variation, mit einer gewissen Vorverarbeitung, um den Suchraum zu verkleinern.

<?php
define ("ACCEL_MAX", 15);
define ("TILE_SIZE_MAX", 2*floor (ACCEL_MAX/2)-1);
define ("TILE_SIZE_MIN", 1);

class Point {
    function __construct ($x=0, $y=0)
    {
        $this->x = (float)$x;
        $this->y = (float)$y;
    }

    function add ($v)
    {
        return new Point ($this->x + $v->x, $this->y + $v->y);
    }
}

class Tile {
    public $center;
    private static $id = 0;

    public function __construct ($corner_x, $corner_y, $size, $type)
    {
        $this->type = $type;
        $this->id = ++self::$id;
        $half = round ($size/2);
        $this->center = new Point ($corner_x+$half, $corner_y+$half));
        for ($x = 0 ; $x != $size ; $x++)
        for ($y = 0 ; $y != $size ; $y++)
            Map::$track[$x+$corner_x][$y+$corner_y] = 0;
        Map::$tile_lookup[$this->center->x][$this->center->y] = $this;
    }

    public function can_reach ($target)
    {
        if (isset($this->reachable[$target->id])) return $this->reachable[$target->id];
        $ex = $target->center->x;
        $ey = $target->center->y;
        $ox = $this->center->x;
        $oy = $this->center->y;
        $sx = $ex - $ox;
        $sy = $ey - $oy;
        $range = max (abs ($sx), abs ($sy));
        if ($range == 0) return false;
        $reachable = true;
        for ($s = 1 ; $s != $range ; $s++)
            if (!isset (Map::$track[$ox + $s/$range*$sx][$oy + $s/$range*$sy]))
            {
                $reachable = false;
                break;
            }
        return $this->reachable[$target->id] = $target->reachable[$this->id] = $reachable;
    }
}

class Node {
    public $posx  , $posy  ;
    public $speedx, $speedy;
    private $parent;

    public function __construct ($posx, $posy, $speedx, $speedy, $parent)
    {
        $this->posx = $posx;
        $this->posy = $posy;
        $this->speedx = $speedx;
        $this->speedy = $speedy;
        $this->parent = $parent;
    }

    public function path ()
    {
        $res = array();
        for ($node = $this ; $node != null ; $node = $node->parent)
        {
            array_unshift ($res, new Point ($node->posx, $node->posy));
        }
        return $res;
    }
}

class Map {
    public static $track;       // map of track pixels
    public static $tile_lookup; // retrieve tile from a position

    private static $tiles;        // all track tiles
    private static $sx, $sy;      // map dimensions
    private static $cell;         // cells of the map
    private static $start;        // starting point
    private static $acceleration; // possible acceleration values
    private static $img; // output image
    private static $output_name;

    const GOAL  = 0;  // terrain types
    const START = 1;
    const TRACK = 2;

    private static function create_tile ($cx, $cy, $size)
    {
        for ($x = $cx ; $x != $cx + $size ; $x++)
        for ($y = $cy ; $y != $cy + $size ; $y++)
            if (!isset (self::$track[$x][$y]) || !self::$track[$x][$y]) return false;
        for ($x = $cx ; $x != $cx + $size ; $x++)
        for ($y = $cy ; $y != $cy + $size ; $y++)
            self::$track[$x][$y] = 0;
//Trace::msg ("track tile $cx $cy $size");
        return new Tile ($cx, $cy, $size, self::TRACK);
    }

    public static function init ($filename)
    {
        // read map definition
        $img = imagecreatefrompng ($filename) or die ("could not read $filename");
        self::$img = $img;
        self::$output_name = "_".$filename;
        self::$sx = imagesx ($img);
        self::$sy = imagesy ($img);

        for ($x = 0 ; $x != self::$sx ; $x++)
        for ($y = 0 ; $y != self::$sy ; $y++)
        {
            $color = imagecolorat ($img, $x, $y) & 0xFFFFFF;
            if      ($color  ==        0) self::$tiles[]                  = new Tile ($x, $y, 1, Map::GOAL);
            else if ($color  == 0xFFFF00) self::$tiles[] = self::$start[] = new Tile ($x, $y, 1, Map::START);
            else
            {
                $r = ($color >> 16) & 0xFF;
                $g = ($color >>  8) & 0xFF;
                $b =  $color        & 0xFF;
                if ($r == $g && $r == $b && $r >= 30 && $r <= 220) @self::$track[$x][$y] = 1;
            }
        }

        for ($size = TILE_SIZE_MAX ; $size >= TILE_SIZE_MIN ; $size--)
        for ($x = 0 ; $x != self::$sx ; $x++)
        for ($y = 0 ; $y != self::$sy ; $y++)
        {
            $tile = self::create_tile ($x, $y, $size);
            if ($tile) self::$tiles[] = $tile;
        }

        self::$acceleration = array();
        for ($x = -ACCEL_MAX ; $x <= ACCEL_MAX ; $x++)
        for ($y = -ACCEL_MAX ; $y <= ACCEL_MAX ; $y++)
        {
            if (abs ($x) + abs ($y) <= ACCEL_MAX) self::$acceleration[] = new Point ($x, $y);
        }
    }

    public static function solve ()
    {
        $res = $border = $present = array();
        foreach (self::$start as $start)
        {
            $border[] = new Node ($start->center->x, $start->center->y, 0, 0, null);
            $present[$start->center->x." ".$start->center->y." 0 0"] = 1;
        }
        while (count ($border))
        {
            $node = array_shift ($border);
            $px = $node->posx;
            $py = $node->posy;
            $vx = $node->speedx;
            $vy = $node->speedy;
            $current = self::$tile_lookup[$px][$py];
            foreach (self::$acceleration as $a)
            {
                $nvx = $vx + $a->x;
                $nvy = $vy + $a->y;
                $npx = $px + $nvx;
                $npy = $py + $nvy;
                @$tile = self::$tile_lookup[$npx][$npy];
                if (!$tile || !$tile->can_reach ($current)) continue;
                if ($tile->type == self::GOAL)
                {
                    $end = new Node ($npx, $npy, $nvx, $nvy, $node);
                    $res = $end->path ();
                    $ox = $res[0]->x;
                    $oy = $res[0]->y;
                    for ($i = 1 ; $i != count ($res) ; $i++)
                    {
                        $ex = $res[$i]->x;
                        $ey = $res[$i]->y;
                        imageline (self::$img, $ox, $oy, $ex, $ey, 0xFFFFFF);
                        $ox = $ex; $oy = $ey;
                    }
                    for ($i = 0 ; $i != count ($res) ; $i++)
                    {
                        imagesetpixel (self::$img, $res[$i]->x, $res[$i]->y, 0xFF);
                    }
                    imagepng (self::$img, self::$output_name);
printf (count($present)." nodes, ".round(memory_get_usage(true)/1024)."K\n");
printf ((count($res)-1)." moves\n");
                    return;
                }
                $signature = "$npx $npy $nvx $nvy";
                if (isset ($present[$signature])) continue;
                $border[] = new Node ($npx, $npy, $nvx, $nvy, $node);
                $present[$signature] = 1;
            }
        }
    }
}

ini_set("memory_limit","1000M");
Map::init ($argv[1]);
Map::solve();
?>

Sprachauswahl

PHP ist ziemlich gut im Umgang mit Bildern.
Der native assoziative Speicher macht das Programmieren der BFS-Knotensuche zum Kinderspiel.

Der Nachteil ist, dass das Hashing der Knotenkennungen nicht sonderlich zeiteffizient ist, sodass das Ergebnis alles andere als schnell ist.

Aus meinen Experimenten mit der vorherigen Rennherausforderung habe ich keinen Zweifel, dass C ++ 11 und seine Hash-Tabellen viel besser abschneiden würden, aber der Quellcode würde sich mindestens verdoppeln, plus der Notwendigkeit für irgendeine externe PNG-Bibliothek (sogar LodePNG) Machen Sie für einen chaotischen Build.

Perl und seine fortschrittlicheren Nachkommen ermöglichen wahrscheinlich einen kompakteren und effizienteren Code (aufgrund der besseren Hash-Leistung), aber ich kenne mich mit keinem dieser Programme aus, um einen Port auszuprobieren.

BFS-Kern

Die Suche wird auf einem Positions- + Geschwindigkeitsraum ausgeführt, dh ein Knoten repräsentiert einen bestimmten mit einer bestimmten Geschwindigkeit besuchten Ort.
Dies ergibt natürlich einen ziemlich großen Suchraum, liefert jedoch optimale Ergebnisse, vorausgesetzt, alle möglichen Track-Positionen werden untersucht.

Angesichts der Anzahl der Pixel auf einem kleinen Bild kommt eine umfassende Suche natürlich nicht in Frage.

Schnitte

Ich entschied mich, den Positionsraum zu durchtrennen, indem ich nur eine Teilmenge von Spurpixeln auswählte.
Der Löser berücksichtigt alle erreichbaren Positionen, die nur durch die Beschleunigung begrenzt sind.

Die Spur ist mit Quadraten gekachelt, deren maximale Größe so berechnet wird, dass zwei benachbarte Quadrate mit der maximal zulässigen Beschleunigung erreicht werden können (dh 14 x 14 Pixel mit dem aktuellen Tempolimit).
Nachdem die Strecke mit großen Quadraten gefüllt wurde, werden zunehmend kleinere Kacheln verwendet, um den verbleibenden Raum zu füllen.
Nur die Mitte jeder Kachel wird als mögliches Ziel angesehen.

Hier ist ein Beispiel:

Beispiel für Track Tiling

Diese heuristische Auswahl reicht aus, um den Solver auf der Albtraumkarte zum Scheitern zu bringen. Ich nehme an, man könnte versuchen, die maximale Kachelgröße zu reduzieren, bis eine Lösung gefunden ist, aber mit den aktuellen Einstellungen läuft der Solver etwa eine Stunde und verwendet 600 MB, sodass genauere Ergebnisse eine unangemessene Menge an Zeit und Speicher erfordern würden.

Bei einem zweiten Schnitt werden möglicherweise Quadrate von nur 1 Pixel weggelassen.
Dies wird natürlich die Lösung verschlechtern oder sogar verhindern, dass der Löser welche findet, aber es verbessert die Rechenzeit erheblich und liefert normalerweise ziemlich nahe Ergebnisse auf "einfachen" Karten.

Wenn Sie beispielsweise in der Stadt 1x1-Pixel-Quadrate weglassen, werden die erkundeten BFS-Baumknoten von 660 KB auf etwa 90 KB für 47-gegen-53-Zug-Lösungen reduziert.

BFS gegen A *

Ein * benötigt mehr Code und liefert im Positions- / Geschwindigkeitsbereich nicht einmal garantiert schnellere Ergebnisse, da die Bewertung des besten nächsten Kandidaten nicht so einfach ist wie im klassischen Positionsbereich (der leicht mit zweckgebundener Kulisse besiegt werden kann). de-sacs sowieso).

Außerdem, obwohl PHP einige vorrangige Warteschlangen hat, die im Gegensatz zu ihren C ++ - Verwandten die dynamische Neuordnung unterstützen, bezweifle ich, dass sie für eine effiziente A * -Implementierung und das Umschreiben eines binären Heaps oder einer beliebigen dedizierten A * -Warteschlangenstruktur ausreichen würden erfordern viel zu viele Codezeilen.

Wandcheck

Ich habe keinen Bresenham-Algorithmus verwendet, um nach Wandkollisionen zu suchen, sodass die Flugbahn möglicherweise das ungerade Wandpixel abschneidet. Es sollte jedoch nicht erlaubt sein, eine Mauer zu durchqueren.

Vorstellungen

Dieser Löser ist sicher kein sechsbeiniger Hase.
Ohne den zusätzlichen Schnitt kann das Lösen einer Karte auf meinem PC mit mittlerer Reichweite über 10 Minuten dauern.
Ich empfehle, die minimale Kachelgröße auf 2 oder 3 zu setzen, wenn Sie mit dem Code experimentieren möchten, ohne lange auf ein Ergebnis zu warten.

Der Speicherverbrauch ist für diese Art von Algorithmus und Sprache angemessen: etwa 100 MB oder weniger, mit Ausnahme von Alptraumsituationen, die über 600 MB liegen.

Ergebnisse und Wertung

Die Bewertungen werden ohne den Schnitt "minimale Fliesengröße" angegeben.

Wie ein aufmerksamer Leser aus meinen allgemeinen Kommentaren ableiten mag, ist mir der Golf-Teil dieser Herausforderung nicht besonders wichtig. Ich sehe nicht, wie das Ausführen meines Codes durch einen Verschleierer oder das Löschen einiger Optimierungen und / oder Debug-Routinen, um die Quelle zu verkleinern, das noch mehr Spaß machen würde.

Sei nur S die Größe des Quellbytes für den Moment:

Spur S + 1020

Ergebnis verfolgen

Stadt S + 470

Stadtergebnis

Hindernisse S + 280

Bildbeschreibung hier eingeben

Albtraum -> scheitert


Eine sehr vollständige und aussagekräftige Antwort. Es ist sehr interessant zu sehen, welche Kompromisse zwischen Geschwindigkeit, Raum und Komplexität bestehen und welche Überlegungen hinter einer Sprachauswahl stehen.
Logic Knight

Ihr Geradeausalgorithmus sieht gut aus, Ihr Auto hat jedoch möglicherweise auf der Stadtbahn Schäden davongetragen, als es einige Wände beschnitten hat (z. B .: Segment 7 und 14). Möglicherweise haben Sie einen kleinen Fehler in Ihrem Programm.
Logic Knight

Nun, wie gesagt, ich benutze einen Quick & Dirty Line Check, der nicht mit dem Bresenham-Algorithmus übereinstimmt, der beim nativen Linienzeichnen verwendet wird. Das erklärt den gelegentlichen Unterschied von 1 Pixel, der das Auto an den Wänden befestigen lässt, aber der Scheck versichert, dass das Auto auch bei einer Breite von 1 Pixel nicht direkt über eine Wand fährt. Ich könnte eine genauere Koordinatenberechnung durchführen, wenn Sie glauben, dass dies ein schwerwiegender Fehler ist.

Aus meiner Sicht ist eine abgeschnittene Wand hier oder da kein Problem. Wenn ein Mitbewerber betroffen ist, können wir darüber diskutieren. Wenn es jedoch mein Code wäre, würde mich solch ein OBOB (mit einem Fehler) verrückt machen.
Logic Knight

1
Das würde mir genauso gehen, wenn dieser Idiot in der Lage wäre, die Albtraumkarte zu knacken. Solange dies nicht der Fall ist, ist es nicht wert, dass die Strichzeichnung gepflegt wird :).

9

SecondRacer Java (1788 + 72 * 10 = 2508) (2708) (2887) (3088) (3382) (4109 + 72 * 10 = 4839) (4290 + 86 * 10 = 5150)

Ähnlich wie FirstRacer. In den Schritten 2.2 und 3. ist dies jedoch anders, wodurch vorausschauend gefahren und der Gang benutzt wird.

  1. A * (Ein Stern)
  • 2.1 Erstellen Sie die A * -Suchlandschaft.
  • 2.2. Finden Sie die beste Zelle in * Sicht * und berücksichtigen Sie die euklidische Distanz. (Schauen Sie immer noch nur in die Richtungen N, S, E, W, NE, NW, SE, SW.) Infolgedessen findet SecondRacer einen Pfad mit viel weniger Wegpunkten.
  1. Die Optimierung ist jetzt sehr aufwendig. Die Idee ist, die gegebenen Linien zwischen zwei Wegpunkten in so wenig Kurven wie möglich zu unterteilen, ohne die Beschleunigungsbeschränkung zu verletzen.

Performance

Keine dieser Spuren ist ein Problem für A *. Nur ein paar Sekunden (<10) (sogar der "Nightmare Track: The Gauntlet") auf meinem PC mit mittlerer Reichweite.

Pfadstil

Ich nenne es Octopussy. Bei weitem nicht so elegant wie die Pighead-Lösung (von kuroi neko).

Code-Stil

Ich bin in einen moderaten Kampfmodus eingetreten, der die Lesbarkeit beibehält. Fügte aber eine Golf-Version hinzu.

import java.awt.*;
import java.awt.image.*;
import java.io.*;
import java.util.*;
import javax.imageio.*;
import javax.swing.*;
import static java.lang.Math.*;

class AStar2 {
    BufferedImage img;
    int Width;
    int Height;
    int[][] cost;
    int best=Integer.MAX_VALUE;
    Point pBest;

    public static void main(String[] args) throws IOException {
        new AStar2().exec(args);
    }

    void exec(String[] args) throws IOException {
        img = ImageIO.read(new File(args[0]));
        Width=img.getWidth();
        Height=img.getHeight();

        draw(optimize(astar()));

        JFrame frame = new JFrame() {
            public void paint(Graphics g) {
                setSize(Width+17, Height+30+10);
                g.drawImage(img,8,30,null);
            }
        };
        frame.setVisible(true);
    }

    Vector<Point> astar() {
        Vector<Point> v0=findStart();
        while(v0.size()>0) v0=next(v0);

        for(Point p0 = pBest; p0!=null; p0=trackBack(p0)) v0.add(p0);
        return v0;
    }

    Vector<Point> findStart() {
        cost=new int[Width][Height];
        Vector<Point> v=new Vector<Point>();
        for (int i = 0; i < Width; i++)
            for (int j = 0; j < Height; j++) {
                if (getInfo(i,j)==1) {
                    cost[i][j]=0;
                    v.add(new Point(i, j));
                } else {
                    cost[i][j]=Integer.MAX_VALUE;
                    pBest=new Point(i, j);
                }
            }
        return v;
    }

    Vector<Point> next(Vector<Point> v0) {
        Vector<Point> v1=new Vector<Point>();
        for (Point p0 : v0) {
            int x=p0.x, y=p0.y,x1,y1,i1,c1, c0=cost[x][y];
            for (Point p : n(new Point(x,y))) {
                x1 = p.x; y1 = p.y;
                i1=getInfo(x1, y1);
                if (i1/2==1) {
                    c1=c0+(x1==x||y1==y?10:14);
                    if (c1<cost[x1][y1]) {
                        cost[x1][y1]=c1;
                        Point p1=new Point(x1, y1);
                        v1.add(p1);
                        if (i1==3) {
                            if (best>c1) {
                                best=c1;
                                pBest=p1;
                            }
                        }
                    }
                }
            }
        }
        return v1;
    }

    Point trackBack(Point p0) {
        Point p1=null, t;
        int x=p0.x, y=p0.y, i;
        double c0=0, c;
        for (Point p : n(new Point(0,0))) {
            for (i = 1; getInfo((t= new Point(x+i*p.x, y+i*p.y)).x, t.y)>0; i++) {
                c=cost[t.x][t.y]-cost[x][y]+5*sqrt((x-t.x)*(x-t.x) + (y-t.y)*(y-t.y));
                if (c0>c) {
                    c0=c;
                    p1= t;
                }
            }
        }
        return p1;
    }

    Vector<Point> n(Point p) {
        int [] c=new int[] {0, -1,-1, -1,-1, 0,-1, 1,0,1,1, 1,1, 0,1, -1};
        Vector<Point> v=new Vector<Point>();
        for (int i = 0; i < c.length; i+=2) v.add(new Point(p.x+c[i], p.y+c[i+1]));
        return v;
    }

    Vector<Point> optimize(Vector<Point> track) {
        Vector<Point> opt=new Vector<Point>();
        Point p0 = track.get(0);
        opt.add(p0);
        for (int i = 1; i < track.size(); i++) segmentAcceleration(opt, track.get(i));
        return opt;
    }

    boolean constraint(Point p0, Point p1, Point p2) {
        return abs(p2.x-p1.x-p1.x+p0.x) + abs(p2.y-p1.y-p1.y+p0.y) <= 15;
    }

    void segmentAcceleration(Vector<Point> opt, Point p1 ) {
        Point p0 = opt.lastElement();
        int d=max(abs(p0.x-p1.x), abs(p0.y-p1.y)), x=(p1.x-p0.x)/d, y=(p1.y-p0.y)/d, start=opt.size(),i;
        for (i = 0; i <=d; i++) opt.add(new Point(p0.x+x*i, p0.y+y*i));

        for(int success=1; success==1;) {
            success=0;
            for (int j = start; j < opt.size()-1; j++) {
                Point q=new Point(opt.get(j).x+x, opt.get(j).y+y);
                if (opt.get(j).x==opt.get(j+1).x && opt.get(j).y==opt.get(j+1).y) {
                    opt.remove(j);
                    success=1;
                } else if (j>1&&constraint(opt.get(j-2), opt.get(j-1), q) && constraint(opt.get(j-1), q, opt.get(j+1)) && (j>opt.size()-3 || constraint(q, opt.get(j+1), opt.get(j+2)))) {
                    opt.set(j, q);
                    success=1;
                }
            }
        }
    }

    void draw(Vector<Point> track) {
        Graphics2D g = img.createGraphics();
        Point p0=track.get(0);
        for (Point p1: track) {
            g.setColor(Color.WHITE);
            g.drawLine(p0.x, p0.y, p1.x, p1.y);
            img.setRGB(p0.x, p0.y, 0xff0000ff);
            img.setRGB(p1.x, p1.y, 0xff0000ff);
            p0=p1;
        }
    }

    int getInfo(int x, int y) {
        if (x<0 || x>=Width || y<0 || y>=Height) return 0;
        int rgb = img.getRGB(x, y), r=0xff&(rgb>>16), g=0xff&(rgb>> 8), b=0xff&(rgb>> 0);
        switch (rgb) {
        case 0xffffff00: return 1;
        case 0xff000000: return 3;
        default: if (30<=r&&r<=220&&r==g&&g==b) return 2;
        }
        return 0;
    }
}

golfed -> ACHTUNG: Ersetzt die Originaldatei!

import java.awt.*;import javax.imageio.*;import static java.lang.Math.*;class
A{class B{int C,D;}class E extends java.util.Vector<B>{};static java.awt.image.BufferedImage
F;int G=F.getWidth(),H=F.getHeight(),I[][]=new int[G][H],J=-1>>>1,K,L,M=255,N;B
O,P,Q;public static void main(String[]R)throws Exception{F=ImageIO.read(new
java.io.File(R[0]));new A().S();ImageIO.write(F,"PNG",new java.io.File(R[0]));}void
S(){E U=new E(),V=new E();for(K=0;K<G;K++)for(L=0;L<H;L++)if(W(K,L)==1)U.add(X(K,L));else
I[K][L]=J;while(U.size()>0){P=U.remove(0);int C=P.C,D=P.D,Y,Z,a,b;for(N=0;N<9;N++)if(N!=4)if((a=W(Y=C+N/3-1,Z=D+N%3-1))>0&&I[Y][Z]>(b=I[C][D]+(Y==C||Z==D?10:14))){I[Y][Z]=b;U.add(X(Y,Z));if(a==3&&J>b){J=b;O=Q;}}}P=O;while(O!=null){U.add(O);J=O.C;L=O.D;double
c=0,d;O=null;for(N=0;N<9;N++)if(N!=4)for(K=1;W(X(J+K*(N/3-1),L+K*(N%3-1)).C,Q.D)>0;K++)if(c>(d=I[Q.C][Q.D]-I[J][L]+5*sqrt((J-Q.C)*(J-Q.C)+(L-Q.D)*(L-Q.D)))){c=d;O=Q;}}Graphics2D
e=F.createGraphics();V.add(P);for(K=1;K<U.size();K++){O=P;P=U.get(K);e.setColor(Color.WHITE);e.drawLine(O.C,O.D,P.C,P.D);int
f=max(abs(O.C-P.C),abs(O.D-P.D)),C=(P.C-O.C)/f,D=(P.D-O.D)/f,start=V.size();for(L=0;L<=f;L++)V.add(X(O.C+L*C,O.D+L*D));while(f>0)for(f=0,L=start;L<V.size()-1;L++)if(V.get(L).C==V.get(L+1).C&&V.get(L).D==V.get(L+1).D)V.remove(L);else
if(L>1&&g(V.get(L-2),V.get(L-1),X(V.get(L).C+C,V.get(L).D+D))&&g(V.get(L-1),Q,V.get(L+1))&&(L>V.size()-3||g(Q,V.get(L+1),V.get(L+2)))){V.set(L,Q);f=1;}}for(B
h:V)F.setRGB(h.C,h.D,~0xffff00);}B X(int C,int D){Q=new B();Q.C=C;Q.D=D;return
Q;}boolean g(B O,B P,B i){return abs(i.C-P.C-P.C+O.C)+abs(i.D-P.D-P.D+O.D)<16;}int
W(int C,int D){if(C>=0&&C<G&&D>=0&&D<H){int j=F.getRGB(C,D),Q=j>>16&M,e=j>>8&M;if(j==~M)return
1;if(j==M<<24)return 3;if(30<=Q&&Q<=220&&Q==e&&e==(M&j))return 2;}return
0;}}

Alle Bilder werden in ihrer A * -Gradientenlandschaft angezeigt. Ausgehend von hellgelb bis braun (= dunkelgelb). Während - gemäß A * - der resultierende Pfad rückwärts verfolgt wird (hier von braun nach hellgelb).

Rennstrecke S + 175 Rennstrecke

Hindernislauf S + 47 Hindernisstrecke

Stadt S + 72 Stadt

Gauntlet S + 1133 Stulpe


Gut gemacht, Bob. Golfen ist in Java nicht einfach. Es ist, als hättest du eine Golftasche voller Putter ;-)
Logic Knight

@ CarpetPython: Sie haben recht. Also erwarte ich, dass Nimi bald aufholt :-)
Bob Genom

@BobGenom: Haskell ist auch nicht einfach - zumindest für mich. Dies ist meine allererste Golfherausforderung. Ich habe bereits einige weitere Bytes zum Speichern gefunden ... wird später aktualisiert.
Nimi

@nimi: Mir geht fast die Puste aus. Meine Downsizing-Schritte werden kleiner. (Ich wünschte, mein Auto wäre schneller.)
Bob Genom

@ BobGenom: Ich auch. Ich denke, ich bin nahe am Limit.
nimi

9

Tutu - Haskell - ( 3460 2654 2476 2221 2060 1992 1900 + 50 x 10 = 2400)

Strategie:

  1. finde einen*
  2. den Weg mit seinen Nachbarn aufblähen (Abstand 2)
  3. finde wieder a *, aber diesmal im position + speed space, genau wie der pighead racer

Golf:

  • Die Fehlerprüfung wurde größtenteils weggelassen, sodass das Programm davon ausgeht, dass die Karte immer Start- und Endpunkte und dazwischen einen Pfad enthält.
  • kurze Variablennamen

Ich bin kein Haskell-Golfer, daher weiß ich nicht, wie viel weiter gespart werden kann (Bearbeiten: Es stellte sich heraus, dass dies eine Menge ist).

Performance:

Das Gauntlet läuft auf meinem 1,7 GHz Core i5 von 2011 in 9: 21 Minuten. Die City dauert 7,2 Sekunden. (verwendet -O1 mit ghc, -O2 macht das Programm furchtbar langsam)

Optimierungsoptionen sind die Dicke des aufgeblähten Pfads. Bei den kleineren Karten speichert Distanz 3 ein oder zwei Schritte, aber The Gauntlet läuft zu lange, so dass ich bei Distanz 2 bleibe. Das Rennen startet immer beim ersten (dh oben links) gelben Pixel, eine Optimierung von Hand sollte einen zusätzlichen Schritt sparen.

Regelkonformität:

„Pfadfindungsbibliotheken können nicht verwendet werden.“ - Ja, aber die Quelle ist enthalten. Bei den A * -Suchfunktionen handelt es sich um leicht ausgelastete Versionen der Data.Graph.AStar-Bibliothek von Cale Gibbard (siehe http://hackage.haskell.org/package/astar) ).

Die Stadt - 50 Stufen Die Stadt - 50 Stufen

Der Handschuh - 722 Stufen Der Handschuh - 722 Stufen

Ungolfed:

import System.Environment
import Data.Maybe (fromJust)
import Graphics.GD
import qualified Data.Matrix as M
import qualified Data.List as L
import qualified Data.Set as S
import qualified Data.Map as Map
import qualified Data.PSQueue as PSQ

main = do
    trPNG <- loadPngFile =<< fmap head getArgs
    (sX, sY) <- imageSize trPNG
    px <- mapM (flip getPixel trPNG) [(x,y) | y <- [0..sY-1],x <- [0..sX-1]]
    let tr = M.fromList sY sX (map (rgbaToTok . toRGBA) px)
    let rt = findRt tr
    let vrt = findVRt (head rt) (last rt) (bloat rt tr) tr
    let wayPt = map ((\(a,b)->(b-1,a-1)) . fst) vrt
    mapM (\(p1,p2) -> drawLine p1 p2 (rgb 255 255 255) trPNG
        >> setPixel p1 (rgb 0 0 255) trPNG) (zip wayPt (tail wayPt))
    savePngFile "out1.png" trPNG 
    print $ length vrt - 1

findVRt p1 p2 rt tr = (p1, (0,0)) : fromJust (aStar nghb (\_ _ -> 100)
        (\(pos,_) -> fromJust $ Map.lookup pos rt)
        ((==) p2 . fst) (p1, (0,0)))
    where
    nghb ((y,x), (vy,vx)) =
        S.fromList [(newp, (vy+dy,vx+dx)) |
            dy <- [-15 .. 15],
            let ady = abs dy,
            dx <- [-15+ady .. 15-ady],
            not $ dy==0 && dx == 0 && vy == 0 && vx == 0,
            let newp = (y+vy+dy,x+vx+dx),
            Map.member newp rt,
            all ((/=) 1 . (M.!) tr) (bresenham (y,x) newp)]

bloat rt tr = foldr (\(p,h) -> Map.insert p h) Map.empty
                (zip (reverse $ f $ f rt) [0..])
    where
    f = concatMap (n8 tr)

rgbaToTok (r, g, b, _)
    | r+g+b == 0 = 3
    | r==255 && g==255 && b==0 = 2
    | r==g && r==b && 30 <= r && r <= 220 = 0
    | otherwise = 1

findRt tr = s : fromJust (aStar nghb cost (const 1) ((==) 3 . (M.!) tr) s)
    where
    cost (y1,x1) (y2,x2) = if (x1==x2 || y1==y2) then 408 else 577
    nghb = S.fromList . n8 tr
    s = head [(y,x) | y <- [1..M.nrows tr], x <- [1..M.ncols tr],
            M.getElem y x tr == 2]

n8 tr p@(y,x) = filter ((/=) 1 . (M.!) tr) (n8' y x)
    where
    n8' y x | y==1 || x==1 || y == M.nrows tr || x == M.ncols tr = [p]
        | otherwise = [ (y-1,x-1), (y-1,x), (y-1,x+1), (y,x-1),
                (y,x+1), (y+1,x-1), (y+1,x), (y+1,x+1) ]

bresenham start@(y0,x0) end@(y1,x1) = walk start (el `div` 2)
    where
    walk p@(y,x) err
        | p == end = [p]
        | err-es < 0 = p : walk (y+sdy,x+sdx) (err-es+el)
        | otherwise = p : walk (y+pdy,x+pdx) (err-es)

    dx = x1-x0; dy = y1-y0;
    adx = abs dx; ady = abs dy
    sdx = signum dx; sdy = signum dy
    (pdx,pdy,es,el) = if adx > ady then (sdx,0,ady,adx) else (0,sdy,adx,ady)

data AStar a c = AStar {
    vi :: !(S.Set a), wa :: !(PSQ.PSQ a c), sc :: !(Map.Map a c),
    mH :: !(Map.Map a c), ca :: !(Map.Map a a), en :: !(Maybe a) }
    deriving Show

aStarInit s = AStar S.empty (PSQ.singleton s 0) (Map.singleton s 0)
    Map.empty Map.empty Nothing

aStar graph dist heur goal start =
    let s = runAStar graph dist heur goal start
    in case en s of
        Nothing -> Nothing
        Just e -> Just (reverse . takeWhile (not . (== start))
                    . iterate (ca s Map.!) $ e)

runAStar graph dist heur goal start = aStar' (aStarInit start)
    where
    aStar' s = case PSQ.minView (wa s) of
        Nothing -> s
        Just (x PSQ.:-> _, w') ->
            if goal x
            then s { en = Just x }
            else aStar' $ L.foldl' (expand x) (s { wa = w',
                    vi = S.insert x (vi s)})
                    (S.toList (graph x S.\\ vi s))
    expand x s y =
        let vi = sc s Map.! x + dist x y
        in case PSQ.lookup y (wa s) of
            Nothing -> link x y vi (s { mH
                    = Map.insert y (heur y) (mH s) })
            Just _ -> if vi<sc s Map.! y then link x y vi s else s
    link x y v s = s {
            ca = Map.insert y x (ca s),
            sc = Map.insert y v (sc s),
            wa = PSQ.insert y (v + mH s Map.! y) (wa s) }

Golf gespielt:

import System.Environment;import Graphics.GD;import Data.Matrix;import qualified Data.Set as S;import qualified Data.Map as J;import qualified Data.PSQueue as Q
j(Just x)=x;e(y,x)=(x-1,y-1);u=signum;q=J.empty;m=reverse;n=Nothing;z=255;s=abs;t=1<2;f(a,b)(c,d)|b==d||a==c=2|t=3;rT(r,g,b,_)|r+g+b==0=3|r==z&&g==z&&b==0=2|r==g&&r==b&&30<=r&&r<=220=0|t=5
main=do
 i:_<-getArgs;t<-loadPngFile i;(a,b)<-imageSize t;p<-mapM(flip getPixel t)[(x,y)|y<-[0..b-1],x<-[0..a-1]];let r=fromList b a$map(rT.toRGBA)p;s:_=[(y,x)|y<-[1..b],x<-[1..a],getElem y x r==2];c p@(y,x)=filter((<5).(!)r)$if y==1||x==1||y==b||x==a then[p]else[(a,b)|a<-[y-1..y+1],b<-[x-1..x+1],a/=y||b/=x];y=s:j(aS(S.fromList.c)f(\_->1)((==3).(!)r)s);l=concatMap c;w=map(e.fst)$fV(head y)(last y)(foldr(\(p,h)->J.insert p h)q$zip(m$l$l y)[0..])r
 mapM(\(c,d)->drawLine c d(rgb z z z)t>>setPixel c(rgb 0 0 z)t)$zip w$tail w;savePngFile"o.png"t
fV c d r t=(c,(0,0)):j(aS l(\_ _->99)(\(q,_)->j$J.lookup q r)((==d).fst)(c,(0,0)))where l((y,x),(a,b))=S.fromList[(w,(a+c,b+d))|c<-[-15..15],d<-[s c-15..15-s c],any(/=0)[a,b,c,d],let w=(y+a+c,x+b+d),J.member w r,all((<5).(!)t)$br(y,x)w]
br q@(i,j)r@(k,l)=w q$f`div`2where w p@(y,x)e|p==r=[p]|e-o<0=p:w(y+g,x+h)(e-o+f)|t=p:w(y+m,x+n)(e-o);a=s$l-j;b=s$k-i;h=u$l-j;g=u$k-i;(n,m,o,f)|a>b=(h,0,b,a)|t=(0,g,a,b)
data A a c=A{v::S.Set a,w::Q.PSQ a c,k::J.Map a c,mH::J.Map a c,ca::J.Map a a,en::Maybe a}deriving Show
aS g d h o u=b$en s where b Nothing=n;b(Just e)=Just(m.takeWhile(/=u).iterate(ca s J.!)$e);s=l$A S.empty(Q.singleton u 0)(J.singleton u 0)q q n;i x y v s=s{ca=J.insert y x$ca s,k=J.insert y v$k s,w=Q.insert y(v+mH s J.!y)$w s};l s=b$Q.minView$w s where b Nothing=s;b(Just(x Q.:->_,w'))|o x=s{en=Just x}|t=l$foldl(r x)(s{w=w',v=S.insert x$v s})$S.toList$g x S.\\v s;r x s y=b$Q.lookup y$w s where v=k s J.!x+d x y;b Nothing=i x y v$s{mH=J.insert y(h y)$mH s};b(Just _)|v<k s J.!y=i x y v s|t=s

Tutu Geschwister -TS # 1 - (1764 + 43 = 2194)

Edit: TS # 1 jetzt separate Antwort.

Edit II: Der Weg für Die Stadt ist

[(6,7),(21,7),(49,5),(92,3),(126,4),(145,5),(149,6),(153,22),(163,47),(180,64),
(191,73),(191,86),(185,107),(177,122),(175,130),(187,137),(211,147),(237,162),
(254,171),(277,171),(299,175),(321,194),(345,220),(364,237),(370,252),(365,270),
(360,276),(368,284),(387,296),(414,315),(438,330),(463,331),(484,321),(491,311),
(498,316),(508,333),(524,354),(525,375),(519,404),(511,424),(508,434),(513,437),
(533,440),(559,444),(580,458),(591,468),(591,482),(591,511),(598,532),(605,539),
(606,537)]

In The Gauntlet bewegt sich Tutu wie folgt

[(99,143),(114,143),(137,150),(150,161),(149,173),(145,180),(141,197),(138,223),
(135,234),(143,241),(166,248),(186,250),(192,251),(192,261),(192,279),(195,285),
(209,287),(232,284),(248,273),(257,261),(272,256),(279,255),(284,245),(294,243),
(309,231),(330,226),(354,233),(380,253),(400,265),(421,271),(436,268),(438,266),
(440,269),(441,277),(450,278),(470,276),(477,276),(478,285),(481,307),(490,330),
(486,352),(471,370),(449,384),(435,391),(433,401),(446,411),(462,430),(464,450),
(459,477),(454,493),(457,514),(462,522),(472,523),(479,529),(491,531),(493,538),
(496,547),(503,546),(516,545),(519,549),(524,566),(531,575),(531,581),(535,576),
(538,557),(541,523),(545,475),(551,414),(559,342),(565,282),(570,236),(574,204),
(575,184),(574,177),(572,179),(568,174),(568,158),(569,144),(572,143),(578,154),
(585,160),(588,155),(593,140),(598,140),(605,153),(610,156),(611,170),(611,182),
(608,182),(598,175),(594,171),(590,176),(587,195),(589,224),(593,266),(599,321),
(605,376),(609,418),(612,446),(610,465),(615,478),(608,494),(605,521),(611,542),
(618,549),(622,551),(621,563),(611,572),(614,581),(623,581),(630,581),(630,573),
(636,556),(639,551),(642,531),(647,520),(640,511),(637,491),(639,461),(641,416),
(643,356),(647,289),(650,235),(652,195),(647,163),(645,143),(645,136),(653,136),
(670,138),(673,139),(676,155),(679,175),(681,181),(669,188),(662,194),(662,208),
(665,234),(669,274),(674,328),(681,395),(687,457),(692,505),(696,540),(700,560),
(703,566),(706,557),(707,535),(708,498),(711,448),(716,385),(720,325),(723,278),
(726,246),(729,229),(732,227),(733,238),(733,263),(733,303),(733,358),(733,428),
(733,483),(733,523),(732,549),(731,560),(728,558),(726,565),(726,575),(721,575),
(720,586),(720,592),(716,594),(715,608),(715,619),(711,619),(692,619),(658,619),
(609,619),(545,619),(466,619),(372,619),(285,619),(213,619),(155,619),(112,619),
(84,619),(70,618),(70,616),(70,599),(70,567),(70,520),(70,458),(70,381),
(70,300),(70,234),(70,183),(70,147),(70,126),(71,119),(80,119),(104,119),
(143,119),(197,119),(266,119),(350,119),(449,119),(563,119),(681,120),(784,121),
(873,121),(947,121),(1006,121),(1050,121),(1079,121),(1093,121),(1093,122),
(1086,131),(1069,145),(1059,151),(1040,151),(1006,151),(973,150),(955,149),
(950,150),(956,155),(977,160),(994,175),(1003,183),(1003,197),(993,214),
(987,220),(993,223),(1011,223),(1044,223),(1079,229),(1104,240),(1124,242),
(1134,239),(1134,231),(1134,221),(1139,218),(1156,218),(1177,217),(1183,216),
(1191,202),(1208,182),(1231,154),(1249,135),(1259,123),(1264,121),(1264,129),
(1264,152),(1264,190),(1264,243),(1264,311),(1264,393),(1264,460),(1264,512),
(1264,550),(1264,573),(1263,582),(1256,582),(1234,582),(1197,582),(1160,575),
(1132,562),(1118,548),(1113,538),(1107,541),(1099,549),(1102,561),(1113,570),
(1110,578),(1095,583),(1073,581),(1066,579),(1060,566),(1063,559),(1075,554),
(1072,549),(1065,542),(1051,539),(1043,528),(1023,520),(990,511),(970,500),
(953,501),(935,516),(911,534),(899,551),(891,573),(883,580),(867,581),(859,575),
(858,571),(843,566),(830,553),(832,540),(828,527),(819,520),(825,513),(839,506),
(842,495),(843,474),(844,468),(854,468),(877,467),(891,460),(895,452),(901,452),
(906,447),(909,443),(909,441),(915,435),(912,430),(914,429),(908,423),(904,421),
(899,418),(893,417),(879,409),(854,400),(842,390),(842,377),(839,362),(836,362),
(820,360),(812,352),(812,337),(812,307),(814,288),(815,282),(827,280),(834,284),
(850,282),(873,277),(889,280),(891,284),(891,301),(897,320),(903,324),(916,320),
(925,310),(935,314),(953,325),(967,337),(976,345),(981,346),(986,362),(999,378),
(1006,385),(1007,387),(1008,387),(1015,382),(1017,382),(1018,381),(1022,386),
(1021,401),(1008,413),(1009,425),(1014,426),(1031,425),(1038,429),(1047,425),
(1053,429),(1067,426),(1076,425),(1090,427),(1099,424),(1113,426),(1134,427),
(1147,431),(1150,430),(1152,437),(1147,438),(1128,438),(1105,443),(1093,450),
(1089,453),(1085,449),(1075,452),(1064,460),(1055,458),(1052,462),(1049,460),
(1042,464),(1025,463),(1015,463),(1010,470),(1013,471),(1021,472),(1027,476),
(1033,477),(1042,484),(1052,480),(1059,486),(1076,487),(1099,497),(1134,510),
(1169,523),(1191,535),(1205,540),(1210,539),(1210,528),(1210,502),(1210,461),
(1209,409),(1208,372),(1207,349),(1206,341),(1192,335),(1165,327),(1132,310),
(1084,293),(1045,273),(997,256),(961,240),(934,229),(922,218),(919,201),
(917,197),(906,199),(892,212),(876,212),(845,212),(809,212),(781,219),(768,226),
(768,235),(768,259),(768,298),(768,352),(768,421),(769,489),(769,543),(769,582),
(769,606),(769,615),(775,615),(796,615),(832,615),(883,615),(949,615),
(1030,615),(1110,615),(1175,615),(1225,615),(1261,614),(1282,613),(1288,612),
(1296,598),(1296,577),(1296,541),(1296,490),(1296,424),(1296,343),(1296,264),
(1296,200),(1296,151),(1296,116),(1296,96),(1295,90),(1285,90),(1260,90),
(1220,90),(1165,90),(1095,90),(1010,90),(920,90),(844,90),(783,90),(737,90),
(706,90),(690,90),(688,89),(689,86),(681,78),(671,82),(663,90),(648,90),
(618,90),(573,90),(517,90),(476,90),(450,90),(438,89),(439,86),(431,78),
(421,82),(413,90),(398,90),(381,88),(369,78),(357,83),(353,90),(341,90),
(314,90),(297,88),(287,78),(277,82),(269,90),(254,90),(224,90),(179,90),
(123,90),(82,90),(56,90),(43,92),(43,96),(43,115),(43,149),(43,198),(43,262),
(43,341),(43,428),(43,500),(43,557),(43,599),(44,627),(45,640),(49,641),
(67,641),(100,641),(148,641),(211,641),(289,641),(382,641),(490,641),(613,641),
(750,641),(872,641),(979,641),(1071,641),(1148,641),(1212,640),(1261,639),
(1295,638),(1315,636),(1321,633),(1321,621),(1321,594),(1321,552),(1321,495),
(1321,423),(1321,336),(1321,254),(1321,187),(1321,135),(1321,98),(1321,75),
(1320,66),(1313,66),(1291,66),(1254,66),(1207,67),(1175,68),(1157,68),(1154,68),
(1154,75),(1146,75),(1123,75),(1102,74),(1096,73),(1096,69),(1091,66),(1074,66),
(1042,66),(1007,66),(986,65),(980,64),(980,60),(975,57),(958,57),(926,57),
(891,58),(871,59),(866,60),(865,66),(855,66),(830,66),(790,66),(735,66),
(667,66),(614,66),(575,66),(550,65),(540,64),(540,60),(535,57),(518,57),
(489,58),(474,60),(474,62),(472,66),(459,66),(431,66),(388,66),(330,66),
(269,66),(223,66),(191,66),(174,66),(171,65),(168,56),(158,55),(150,61),
(149,66),(138,66),(112,66),(98,63),(95,57),(83,57),(65,59),(61,62),(59,66),
(46,66),(25,67),(18,69),(18,79),(18,104),(18,144),(18,199),(18,269),(18,354),
(18,441),(18,513),(18,570),(18,612),(18,639),(19,652),(26,656),(38,663),
(58,663),(93,663),(143,663),(208,663),(288,663),(383,663),(493,663),(618,663),
(758,663),(884,663),(995,663),(1091,663),(1172,663),(1239,663),(1291,663),
(1328,663),(1350,663),(1358,662),(1361,651),(1376,637),(1378,621),(1374,597),
(1378,574),(1378,541),(1375,519),(1383,501),(1376,483),(1370,478),(1370,464),
(1373,438),(1379,400),(1379,366),(1369,337),(1369,303),(1369,272),(1368,255),
(1382,238),(1381,221),(1371,209),(1375,196),(1380,170),(1374,143),(1367,129),
(1372,112),(1373,85),(1365,64),(1358,57),(1356,41),(1353,39),(1350,41),
(1346,37),(1336,36),(1333,32),(1317,30),(1288,30),(1244,30),(1185,30),(1141,30),
(1102,22),(1057,22),(1026,21),(1005,23),(993,21),(988,25),(975,22),(972,24),
(959,21),(943,24),(937,29),(920,30),(889,30),(843,30),(788,30),(747,30),
(706,39),(664,36),(629,38),(591,34),(559,34),(538,30),(506,30),(465,30),
(431,22),(391,23),(356,22),(328,23),(308,30),(280,30),(237,30),(179,30),
(106,30),(30,28)]

Dieser Eintrag ist im Rennen um die Prämie, aber Sie benötigen eine gültige Pfadliste, um ihn zu beanspruchen.
Logic Knight

@CarpetPython: Ich habe die Pfade für City und Gauntlet hinzugefügt.
nimi

City- und Gauntlet-Pfade bestehen die Beschleunigungsprüfung.
Logic Knight

eine Idee, warum -O2das Programm verlangsamt? seltsam. versucht -O3?
stolzer Haskeller

Übrigens, anscheinend verwenden Sie Maybeviel. Vielleicht können Sie durch MaybeListen ersetzen : Maybe aist [a], Nothingist []und Just xist [x]. Die MaybeMonade wird der Monade gleichgestellt List. Sie können dann eine Menge Listenfunktionen für sie benutzen null, head, (:[]),map und so weiter.
stolzer Haskeller

5

Sternenkreuzer - PHP - 4083 + 440 = viel zu schwer

Ok, nach 3 Wochen ohne Internetverbindung (das passiert, wenn einer der schärfsten Konkurrenten Ihres Providers zufällig für die Baustellenbucht zuständig ist, oder zumindest in Paris, Frankreich), kann ich endlich veröffentlichen Mein nächster Versuch.

Diesmal habe ich den A * -Algorithmus und eine effizientere Strategie zur Verteilung von Wegpunkten verwendet.
Als zusätzlichen Bonus habe ich eine Art PHP-Cruncher geschrieben, um den Golf-Teil der Herausforderung anzusprechen.

Und jetzt, da der Solver auf allen vorgeschlagenen Karten funktioniert, wurde der Fehler bei der Linienverfolgung behoben.
Keine Wandbeschneidung mehr (obwohl die Wand immer noch weidet, wie es sollte :)).

Code ausführen

Geben Sie dem Code einen beliebigen Namen ( runner.phpzum Beispiel) und rufen Sie ihn folgendermaßen auf:

php runner.php track.png

Nachdem Sie eine Weile still gesessen haben, sollte sich eine _track.pngAusgabe ergeben, die die Lösung zeigt.

Wie Sie auf den ausgegebenen Bildern sehen können, lautet der Code sehr langsam. Du wurdest gewarnt.

Natürlich ist meine private Version voll von Spuren und liefert nette Darstellungen verschiedener Informationen (einschließlich eines periodischen Bildes, das den A * Fortschritt zeigt, um die Zeit totzuschlagen), aber für das Golfen muss man einen Preis zahlen ...

Golf Code

<?php
define("_",15);define("a",1e3);class _{function _($a=0,$_=0){$this->a=$a;$this->_=$_;}function b(){return sqrt($this->a*$this->a+$this->_*$this->_);}function a(){$_=$this->b();if($_==0)$_=1;return new _($this->a/$_,$this->_/$_);}}class c{static$_=0;function c($_,$a,$b){$this->c=$b;$this->a=++c::$_;$this->_=new _($_,$a);a::$a[$_][$a]=$this;}function _($_){return(isset($this->b[$_->a]))?$this->b[$_->a]:$this->b[$_->a]=$_->b[$this->a]=a($_->_->a,$_->_->_,$this->_->a,$this->_->_);}}define("c",8/_);define("b",2/a);class d{function d($a,$b,$c=0,$d=0,$_=null){$this->a=$a;$this->_=$b;$this->f=$c;$this->e=$d;$this->d=$_;$this->b=$_==null?0:$_->b+a;$this->c=floor((sqrt(1+c*abs(a::$_[$a][$b]))-1)/b)-a;}}function a($c,$b,$g,$f){$e=$g-$c;$d=$f-$b;$_=2*max(abs($e),abs($d));if($_==0)return 1;$c+=.5;$b+=.5;for($a=1;$a<=$_;$a++)if(!isset(a::$_[$c+$a/$_*$e][$b+$a/$_*$d]))return 0;return 1;}class b{static$a,$_;function _($l,$_,$k){$g=log(.5)/log($l/$_);for($a=-$_;$a<=$_;$a++)for($b=-$_;$b<=$_;$b++){$d=sqrt($a*$a+$b*$b);if($d>=$_)continue;$j=pow(sin(M_PI*pow($d/$_,$g)),$k);$c=new _($a,$b);$i=$c->a();$c->b=$d;$c->d=$j*$i->a;$c->c=$j*$i->_;$h[]=$c;}usort($h,function($b,$a){$_=$b->b-$a->b;return($_>0)?1:(($_<0)?-1:0);});foreach($h as$e)b::$a[$e->b][]=$e;for($a=-$_;$a<=$_;$a++)for($b=-$_;$b<=$_;$b++){$e=new _($a,$b);$d=sqrt($a*$a+$b*$b);for($f=$_;$f>=$d;$f--)b::$_[$f][]=$e;}foreach(b::$_ as$g=>$m)usort(b::$_[$g],function($b,$a){$_=$b->b()-$a->b();return($_<0)?-1:(($_>0)?1:0);});}}b::_(2.5,6,8);class a{static$a,$_;static function _($S){$k=imagecreatefrompng($S);for($a=0;$a!=imagesx($k);$a++)for($_=0;$_!=imagesy($k);$_++){$n=0;$o=imagecolorat($k,$a,$_);if($o==0){$d_[]=new _($a,$_);$n=1;}else if($o==0xFFFF00){$e_[]=new _($a,$_);$n=2;}else{$m=($o>>16)&0xFF;$c_=($o>>8)&0xFF;$a_=$o&0xFF;if($m==$c_&&$m==$a_&&$m>=30&&$m<=220)$n=3;}if($n){$Z[$a][$_]=1;if($n!=3)$b_[]=new c($a,$_,$n);}}for($a=-_;$a<=_;$a++)for($_=-_;$_<=_;$_++)if(abs($a)+abs($_)<=_)$f_[]=new _($a,$_);$l_=array(new _(-1,0),new _(1,0),new _(0,-1),new _(0,1));foreach($d_ as$v){$c[]=new _($v->a,$v->_);a::$_[$v->a][$v->_]=0;}while(count($c)){$t=array_shift($c);$g_=a::$_[$t->a][$t->_]+1;foreach($l_ as$e){$f=$t->a+$e->a;$j=$t->_+$e->_;if(!isset($Z[$f][$j]))continue;if(isset(a::$_[$f][$j]))continue;a::$_[$f][$j]=$g_;$c[]=new _($f,$j);}}foreach(a::$_ as$a=>$g)foreach($g as$_=>$q){$i=0;$E=$H=0;foreach(b::$a as$n_=>$J){foreach($J as$b){if(!isset(a::$_[$a+$b->a][$_+$b->_])){$E+=$b->d;$H+=$b->c;$i++;}}if($i!=0){$E/=$i;$H/=$i;break;}}$W[$a][$_]=new _($E,$H);}foreach(a::$_ as$a=>$g)foreach($g as$_=>$q){$T=$W[$a][$_];$u=$T->a();$R=0;$i=0;foreach(b::$_[1]as$e){@$b=$W[$a+$e->a][$_+$e->_];if(!$b)continue;$V=$b->a();$d=$e->a();$R-=($u->a*$V->_-$u->_*$V->a)*($u->a*$d->_-$u->_*$d->a);$i++;}$p[$a][$_]=(12*$R/$i+1)*$T->b();}$m_=1;$Y=6;$x=0;foreach($p as$a=>$g)foreach($g as$_=>$q)$x=max($x,$q);$h_=($m_-$Y)/$x;foreach($p as$a=>$g)foreach($g as$_=>$q)$X[($Y+$h_*max($q,0))*1e5][]=new _($a,$_);ksort($X);foreach($X as$m=>$J)foreach($J as$b){$a=$b->a;$_=$b->_;if(!isset($p[$a][$_]))continue;$b_[]=new c($a,$_,3);unset($p[$a][$_]);$k_=0;foreach(b::$_[$m/1e5]as$U){$f=$a+$U->a;$j=$_+$U->_;if(a($a,$_,$f,$j))unset($p[$f][$j]);else if(++$k_==2)break;}}foreach($e_ as$s){$e=new d($s->a,$s->_);$c[$e->b+$e->c][]=$e;$y[$s->a." ".$s->_." 0 0"]=$e;}ksort($c);while(count($c)){reset($c);$z=key($c);$r=array_shift($c[$z]);if(empty($c[$z]))unset($c[$z]);$A=$r->a;$C=$r->_;$M=$r->f;$O=$r->e;$i_=a::$a[$A][$C];$l="$A $C $M $O";unset($y[$l]);$j_[$l]=1;foreach($f_ as$P){$B=$M+$P->a;$D=$O+$P->_;$G=$A+$B;$F=$C+$D;@$I=a::$a[$G][$F];if(!$I)continue;$l="$G $F $B $D";if(@$j_[$l]||@$y[$l])continue;if(!$I->_($i_))continue;$d=new d($G,$F,$B,$D,$r);$b=$d->b+$d->c;$__=!isset($c[$b]);$c[$b][]=$d;if($__)ksort($c);$y[$l]=$d;if($I->c==1){for($h=array();$d!=null;$d=$d->d)array_unshift($h,$d);$N=$h[0]->a;$K=$h[0]->_;for($w=1;$w!=count($h);$w++){$L=$h[$w]->a;$Q=$h[$w]->_;imageline($k,$N,$K,$L,$Q,0xFFFFFF);$N=$L;$K=$Q;}foreach($h as$b)imagesetpixel($k,$b->a,$b->_,0xFF);imagepng($k,"_".$S);return;}}}}}ini_set("memory_limit","3G");a::_($argv[1]);

ungolfed version

<?php
define ("ACCEL_MAX", 15);   // maximal acceleration value
define ("MOVE_UNIT", 1000); // heuristic distance to goal precision

class Point {
    function __construct ($x=0, $y=0)
    {
        $this->x = $x;
        $this->y = $y;
    }

    function norm () { return sqrt ($this->x*$this->x + $this->y*$this->y); }

    function normalized() { $n=$this->norm(); if ($n == 0) $n=1; return new Point ($this->x / $n, $this->y / $n); }
}

class Waypoint {
    static $id = 0;

    function __construct ($x, $y, $type)
    {
        // create waypoint
        $this->type = $type;
        $this->id = ++self::$id;
        $this->center = new Point ($x, $y);

        // update waypoint lookup map
        Map::$waypoint_lookup[$x][$y] = $this;
    }

    function can_reach ($target)
    {
        return (isset($this->reachable[$target->id])) 
            ? $this->reachable[$target->id]
            : $this->reachable[$target->id] = $target->reachable[$this->id] = on_track ($target->center->x, $target->center->y, $this->center->x, $this->center->y);
    }
}

define ("L", 8/ACCEL_MAX);
define ("M", 2/MOVE_UNIT);
class Node {
    function __construct ($x, $y, $speedx=0, $speedy=0, $parent=null)
    {
        $this->x = $x;
        $this->y = $y;
        $this->speedx = $speedx;
        $this->speedy = $speedy;
        $this->parent = $parent;

        // previous moves
        $this->moves = $parent == null ? 0 : $parent->moves+MOVE_UNIT;

        // remaining moves heuristic estimation
        $this->dist = floor((sqrt (1+L*abs(Map::$dist_to_goal[$x][$y])) - 1)/M) - MOVE_UNIT;
    }
}

function on_track ($ox, $oy, $ex, $ey)
{
    $sx = $ex - $ox;
    $sy = $ey - $oy;
    $range = 2*max (abs ($sx), abs ($sy));
    if ($range == 0) return 1;
    $ox+=.5;
    $oy+=.5;
    for ($s = 1 ; $s <= $range ; $s++) if (!isset (Map::$dist_to_goal[$ox + $s/$range*$sx][$oy + $s/$range*$sy])) return 0;
    return 1;
}

class Border {
    static $circle, $area;

    function init ($dopt, $dmax, $erf)
    {
        $k = log (.5)/log($dopt/$dmax);

        for ($x = -$dmax ; $x <= $dmax ; $x++)
        for ($y = -$dmax ; $y <= $dmax ; $y++)
        {
            $d = sqrt ($x*$x+$y*$y);
            if ($d >= $dmax) continue;
            $i = pow(sin (M_PI*pow($d/$dmax,$k)),$erf); // a function that will produce a kind of asymetric gaussian
            $pt = new Point($x,$y);
            $pn = $pt->normalized();
            $pt->d = $d;
            $pt->ix = $i * $pn->x;
            $pt->iy = $i * $pn->y;
            $points[] = $pt;
        }
        usort ($points, function ($a,$b) { $d = $a->d - $b->d; return ($d > 0) ? 1 : (($d < 0) ? -1 : 0); });
        foreach ($points as $p) self::$circle[$p->d][] = $p;

        for ($x = -$dmax ; $x <= $dmax ; $x++)
        for ($y = -$dmax ; $y <= $dmax ; $y++)
        {
            $p = new Point ($x, $y);
            $d = sqrt ($x*$x+$y*$y);
            for ($r = $dmax ; $r >= $d ; $r--) self::$area[$r][] = $p;
        }
        foreach (self::$area as $k=>$a) usort (self::$area[$k], function ($a,$b) { $d = $a->norm()-$b->norm(); return ($d < 0) ? -1 : (($d > 0) ? 1 : 0); });
    }
}
Border::init(2.5,6,8);

class Map {
    static
        $waypoint_lookup, // retrieve waypoint from a position
        $dist_to_goal;    // upper bound of distance to closest goal for each track point
                          // also used to check if a point is on track

/*      
    const NONE  = 0;  // terrain types
    const GOAL  = 1;
    const START = 2;
    const TRACK = 3;
*/      
    static function solve ($filename)
    {
        // read map definition
        $img = imagecreatefrompng ($filename);// or die ("could not read $filename");
        $img_dx = imagesx ($img);
        $img_dy = imagesy ($img);

        // extract track pixels
        for ($x = 0 ; $x != $img_dx ; $x++)
        for ($y = 0 ; $y != $img_dy ; $y++)
        {
            $type = 0 /*Map::NONE*/;
            $color = imagecolorat ($img, $x, $y);
            if      ($color  ==        0) { $goals [] = new Point ($x, $y); $type = 1 /*Map::GOAL*/;  }
            else if ($color  == 0xFFFF00) { $starts[] = new Point ($x, $y); $type = 2 /*Map::START*/; }
            else
            {
                $r = ($color >> 16) & 0xFF;
                $g = ($color >>  8) & 0xFF;
                $b =  $color        & 0xFF;
                if ($r == $g && $r == $b && $r >= 30 && $r <= 220) $type = 3 /*Map::TRACK*/;
            }
            if ($type /* != Map::NONE */)
            {
                $track[$x][$y] = 1; // mark all track points
                if ($type != 3 /*Map::TRACK*/) $waypoints[] = new Waypoint ($x, $y, $type); // add start and goal positions as waypoints
            }
        }

        // compute possible acceleration values
        for ($x = -ACCEL_MAX ; $x <= ACCEL_MAX ; $x++)
        for ($y = -ACCEL_MAX ; $y <= ACCEL_MAX ; $y++)
            if (abs ($x) + abs ($y) <= ACCEL_MAX) $acceleration[] = new Point ($x, $y);

        // compute goal distance
        $neighbours = array (new Point (-1, 0), new Point (1, 0), new Point (0, -1), new Point (0, 1)); 
        foreach ($goals as $goal)
        {
            $border[] = new Point ($goal->x, $goal->y);
            Map::$dist_to_goal[$goal->x][$goal->y] = 0;
        }
        while (count ($border))
        {
            $pos = array_shift ($border);
            $dist = Map::$dist_to_goal[$pos->x][$pos->y] + 1;
            foreach ($neighbours as $n)
            {
                $nx = $pos->x + $n->x;
                $ny = $pos->y + $n->y;
                if (!isset ($track[$nx][$ny])) continue;
                if (isset (Map::$dist_to_goal[$nx][$ny])) continue;
                Map::$dist_to_goal[$nx][$ny] = $dist;
                $border[] = new Point ($nx, $ny);
            }
        }

        // compute wall distance vector field
        foreach (self::$dist_to_goal as $x=>$col)
        foreach ($col as $y=>$c)
        {
            $num = 0;
            $ix = $iy = 0;
            foreach (Border::$circle as $d=>$points)
            {
                foreach ($points as $p)
                {
                    if (!isset (Map::$dist_to_goal[$x+$p->x][$y+$p->y]))
                    {
                        $ix += $p->ix;
                        $iy += $p->iy;
                        $num++;
                    }
                }
                if ($num != 0)
                {
                    $ix /= $num;
                    $iy /= $num;
                    break;
                }
            }
            $wall_vector[$x][$y] = new Point ($ix, $iy);
        }

        // compute local curvature and deduce desired waypoint density
        foreach (self::$dist_to_goal as $x=>$col)
        foreach ($col as $y=>$c)
        {
            $o = $wall_vector[$x][$y];
            $oo = $o->normalized();
            $curvature = 0;
            $num = 0;
            foreach (Border::$area[1] as $n)
            {
                @$p = $wall_vector[$x+$n->x][$y+$n->y];
                if (!$p) continue;
                $pp = $p->normalized();
                $nn = $n->normalized();
                $curvature -= ($oo->x*$pp->y-$oo->y*$pp->x) * ($oo->x*$nn->y-$oo->y*$nn->x);
                $num++;
            }
            $waypoint_density[$x][$y] = (12*$curvature/$num + 1) * $o->norm(); // a wierd mix of curvature and wall distance
        }

        // compute track waypoints
        $rmin = 1;
        $rmax = 6;
        $c_max = 0;
        foreach ($waypoint_density as $x=>$col)
        foreach ($col as $y=>$c)
            $c_max = max ($c_max, $c);
        $ra = ($rmin-$rmax)/$c_max;
        foreach ($waypoint_density as $x=>$col)
        foreach ($col as $y=>$c)
            $placement[($rmax + $ra * max ($c, 0))*1e5][] = new Point ($x, $y);
        ksort($placement);
//var_dump($placement);exit(0);
        foreach ($placement as $r=>$points)
        foreach ($points as $p)
        {
            $x = $p->x;
            $y = $p->y;
            if (!isset ($waypoint_density[$x][$y])) continue;
            $waypoints[] = new Waypoint ($x, $y, 3 /*Map::TRACK*/);
            unset ($waypoint_density[$x][$y]);
            $out=0;
            foreach (Border::$area[$r/1e5] as $delta)
            {
                $nx = $x+$delta->x;
                $ny = $y+$delta->y;
                if (on_track ($x, $y, $nx, $ny)) unset ($waypoint_density[$nx][$ny]);
                else if (++$out == 2) break;
            }
        }

        // unleash the mighty A*
//$begining=microtime(true);
        foreach ($starts as $start)
        {
            $n = new Node ($start->x, $start->y);
            $border[$n->moves+$n->dist][] = $n;
            $open[$start->x." ".$start->y." 0 0"] = $n;
        }
        ksort ($border);
        while (count ($border))
        {
            // get one of the most prioritary nodes
            reset ($border);
            $p_list = key ($border);
            $node = array_shift ($border[$p_list]);
            if (empty ($border[$p_list])) unset ($border[$p_list]);

            $px = $node->x;
            $py = $node->y;
            $vx = $node->speedx;
            $vy = $node->speedy;
            $current = Map::$waypoint_lookup[$px][$py];

            // move node from open to closed list
            $signature = "$px $py $vx $vy";
            unset ($open[$signature]);
            $closed[$signature] = 1;

            // try all possible accelerations
            foreach ($acceleration as $a)
            {
                $nvx = $vx + $a->x;
                $nvy = $vy + $a->y;
                $npx = $px + $nvx;
                $npy = $py + $nvy;

                // select waypoints within reach
                @$waypoint = Map::$waypoint_lookup[$npx][$npy];
                if (!$waypoint) continue;

                // skip already know nodes
                $signature = "$npx $npy $nvx $nvy";
                if (@$closed[$signature] || @$open[$signature]) continue;

                // check track geometry
                if (!$waypoint->can_reach ($current)) continue;

                // insert new node into priority list
                $nn = new Node ($npx, $npy, $nvx, $nvy, $node);
                $p = $nn->moves+$nn->dist;
                $resort = !isset($border[$p]);
                $border[$p][] = $nn;
                if ($resort) ksort ($border);
                $open[$signature] = $nn;

                // check termination
                if ($waypoint->type == 1 /*Map::GOAL*/)
                {
                    for ($path=array() ; $nn != null ; $nn = $nn->parent) array_unshift ($path, $nn);
                    $ox = $path[0]->x;
                    $oy = $path[0]->y;
                    for ($i = 1 ; $i != count($path) ; $i++)
                    {
                        $ex = $path[$i]->x;
                        $ey = $path[$i]->y;
                        imageline ($img, $ox, $oy, $ex, $ey, 0xFFFFFF);
                        $ox = $ex; $oy = $ey;
                    }
                    foreach ($path as $p) imagefilledellipse ($img, $p->x, $p->y, 2, 2, 0xFF);
                    imagepng ($img, "_".$filename);
//echo (count($path)-1)." moves, ".count($waypoints)." waypoints, ".count($closed)."+".count($open)." nodes, ".(round((microtime(true)-$begining)*100)/100)."s, ".round(memory_get_usage(true)/1024)."K";
                    return;
                }
            }
        }
    }
}

ini_set("memory_limit","2G"); // just in case...
Map::solve ($argv[1]);
?>

Ergebnisse

Die Bilder werden von einer umfangreicheren Version erstellt, die genau dieselbe Lösung mit einigen Statistiken unten ausgibt (und den Pfad mit Antialiasing zeichnet).

Der Stadtplan ist ein ziemlich gutes Beispiel dafür, warum positionsbasierte Algorithmen in vielen Fällen zu unterdurchschnittlichen Ergebnissen führen müssen: Kürzere bedeuten nicht immer schnellere.

Stadt Spur Hindernisse Albtraum (672 Züge, wenn Sie nicht zoomen möchten)

EIN*

Zu meiner Überraschung schneidet A * im Positions-Geschwindigkeits-Raum ziemlich gut ab. Jedenfalls besser als BFS.

Ich musste allerdings ziemlich viel schwitzen, um eine funktionierende heuristische Entfernungsschätzung zu erstellen.

Ich musste es auch etwas optimieren, da die Anzahl der möglichen Zustände im Vergleich zu einer reinen Positionsvariante, die wiederum mehr Code erfordert, sehr groß ist (einige Millionen).

Die Untergrenze für die Anzahl der Züge, die erforderlich sind, um ein Ziel von einer bestimmten Position aus zu erreichen, ist einfach die Zeit, die erforderlich ist, um die Entfernung zum nächsten Ziel in einer geraden Linie mit einer Anfangsgeschwindigkeit von Null zurückzulegen .

Natürlich führt der geradlinige Pfad normalerweise direkt in eine Wand, aber dies ist ungefähr das gleiche Problem wie die Verwendung des euklidischen geraden Abstands für A * -Suche nur im Weltraum.
Genau wie der euklidische Abstand für Nur-Weltraum-Varianten besteht der Hauptvorteil dieser Metrik, abgesehen davon, dass die effizienteste A * -Variante (mit geschlossenen Knoten) verwendet werden kann, darin, dass nur eine sehr geringe topologische Analyse der Strecke erforderlich ist.

Bei einer maximalen Beschleunigung A ist die Anzahl n der Bewegungen, die zum Zurücklegen einer Strecke d erforderlich sind, die kleinste ganze Zahl, die die folgende Beziehung erfüllt:

d <= An (n + 1) / 2

Wenn Sie dies nach n auflösen, erhalten Sie eine Schätzung der verbleibenden Entfernung.

Um dies zu berechnen, wird eine Karte der Entfernung zum nächsten Ziel erstellt, wobei ein Flood-Fill-Algorithmus verwendet wird, der mit Zielpositionen geimpft ist.
Es hat den angenehmen Nebeneffekt, dass Trackpunkte beseitigt werden, von denen aus kein Ziel erreicht werden kann (wie es in einigen Bereichen des Albtraum-Tracks der Fall ist).
Die Anzahl der Bewegungen wird als Gleitkommawert berechnet, so dass näher am Ziel liegende Knoten weiter unterschieden werden können.

Wegpunkte

Wie bei meinem vorherigen Versuch geht es darum, die Anzahl der Trackpunkte auf eine möglichst kleine Untermenge von Wegpunkten zu reduzieren. Der Trick besteht darin, die "nützlichsten" Positionen auf der Strecke zu finden.

Die Heuristik beginnt mit einer regelmäßigen Neuaufteilung über die gesamte Strecke, erhöht jedoch die Dichte in zwei Arten von Bereichen:

  1. der Rand der Spur, dh Spuren, die 1 oder 2 Pixel von den Wänden entfernt verlaufen
  2. Zonen hoher Krümmung, dh der innere Rand scharfer Biegungen.

Hier ist ein Beispiel.
Bereiche mit hoher Dichte sind rot, Bereiche mit niedriger Dichte grün. Blaue Pixel sind die ausgewählten Wegpunkte.
Beachten Sie die Anhäufungen von Wegpunkten in scharfen Kurven (bei vielen nutzlosen Flecken auf schrägen Kurven aufgrund unzureichender Filterung).

Wegpunktdichte und -platzierung

Um die Position der Fahrspuren zu berechnen, wird die gesamte Strecke nach der Entfernung zur nächsten Wand abgesucht. Das Ergebnis ist ein Feld von Vektoren, die auf die nächste Spurgrenze zeigen.
Dieses Vektorfeld wird dann verarbeitet, um eine grobe Abschätzung der lokalen Krümmung zu erzeugen.
Schließlich werden Krümmung und Abstand zur Wand kombiniert, um eine gewünschte lokale Dichte zu erzeugen, und ein ziemlich klobiger Algorithmus versucht, Wegpunkte entsprechend über die Strecke zu streuen.

Eine bemerkenswerte Verbesserung gegenüber der vorherigen Strategie ist, dass schmale Fahrspuren (anscheinend) immer genügend Wegpunkte zum Durchfahren haben, was das Navigieren auf der Albtraumkarte ermöglicht.

Wie immer geht es darum, einen Sweet Spot zwischen Rechenzeit und Effizienz zu finden.
Bei einer Verringerung der Dichte um 50% wird die Rechenzeit durch mehr als 4 geteilt, jedoch mit gröberen Ergebnissen (48 Züge anstelle von 44 in der Stadt, 720 anstelle von 670 im Albtraum).

Golfen

Ich denke immer noch, dass Golfen der Kreativität in diesem speziellen Fall schadet: Das Entfernen von Antialiasing aus der Ausgabe reicht aus, um 30 Punkte zu erzielen, und erfordert viel weniger Aufwand als das Ändern von 47 auf 44 Züge auf dem Stadtplan.
Selbst ein Wechsel von 720 auf 670 in einem Albtraum würde nur 500 Punkte bringen, obwohl ich sehr bezweifle, dass ein A * nur auf Position in der Lage wäre, sich dem anzunähern.

Aus Spaß habe ich beschlossen, trotzdem meinen eigenen PHP-Kompressor zu schreiben.

Wie es scheint, ist das effiziente Umbenennen von Bezeichnern in PHP keine leichte Aufgabe. Tatsächlich glaube ich nicht, dass es überhaupt möglich ist, dies im allgemeinen Fall zu tun. Selbst bei einer vollständigen semantischen Analyse würde die Möglichkeit, Zeichenfolgen oder indirekte Variablen zur Bezeichnung von Objekten zu verwenden, die Kenntnis jeder Funktionssemantik erfordern.
Da der sehr praktische eingebaute Parser es jedoch ermöglicht, sofort auf die semantische Analyse zuzugreifen, habe ich es geschafft, etwas zu produzieren, das auf einer Teilmenge von PHP zu funktionieren scheint, die ausreicht, um "golffähigen" Code zu schreiben (halten Sie sich von $$ fern und tun Sie das nicht Verwenden Sie indirekte Funktionsaufrufe oder anderen String-Zugriff auf Objekte.
Keine praktische Verwendung und nichts mit dem ursprünglichen Problem zu tun, aber dennoch viel Spaß beim Programmieren.

Ich hätte den Code weiter abtöten können, um zusätzliche 500 Zeichen zu erhalten, aber da die Namen der PHP-Grafikbibliothek leider ziemlich lang sind, ist es eine Art harter Kampf.

Weiterentwicklungen

Der Wegpunkt-Auswahlcode ist ein schreckliches Durcheinander, das durch Ausprobieren eingestellt wird. Ich vermute, dass mehr Mathematik (unter Verwendung geeigneter Gradienten- und Lockenoperatoren) den Prozess erheblich verbessern würde.

Ich bin gespannt, ob eine bessere Entfernungsheuristik gefunden werden kann. Ich habe versucht, die Geschwindigkeit auf verschiedene Arten zu berücksichtigen, aber sie hat entweder das A * gebrochen oder langsamere Ergebnisse hervorgebracht.

Es könnte möglich sein, all dies in einer schnelleren Sprache wie C ++ zu rekodieren, aber die PHP-Version verlässt sich stark auf die Garbage Collection, um den Speicherverbrauch in einem vernünftigen Rahmen zu halten. Das Bereinigen geschlossener Knoten in C ++ würde viel Arbeit und eine beträchtliche Menge zusätzlichen Codes erfordern.

Wäre die Wertung auf Performances basiert, hätte ich eifrig versucht, die Algorithmen zu verbessern. Aber da das Golfkriterium so überwältigend ist, gibt es keinen wirklichen Grund, oder?


Beeindruckende Algorithmusarbeit und hervorragende Beschreibung Ihres Eintrags +1.
Logic Knight

Hoffentlich beantwortet der angebotene Bonus Ihre letzte Frage. Mal sehen, wie schnell diese Autos fahren können!
Logic Knight

Hehe, ich habe eine etwas schnellere Version, aber sie ist so hässlich, dass ich sie lieber nicht veröffentlichen würde, es sei denn, jemand schlägt die aktuelle :)

Sie sind im Rennen um das Kopfgeld, müssen aber die gültige Pfadliste anzeigen, um es in Anspruch zu nehmen (siehe bearbeitete Frage).
Logic Knight

Bah, mein Stück Junk-Code ist kein Kopfgeld wert. Ich hoffe lieber auf eine bessere Lösung.

2

ThirdRacer Java (1224 + 93 * 10 = 2154)

Ähnlich wie SecondRacer. Aber den Fokus von Geschwindigkeit auf Codegröße umstellen (aber immer noch Java verwenden). Die Optimierung der Beschleunigung ist jetzt viel einfacher, was leider zu einem langsameren Auto führt.

Performance

Besser als SecondRacer.

Pfadstil

Wie SecondRacer.

Code-Stil

Ich trat in einen schweren Kampfmodus ein.

golfed -> ACHTUNG: Ersetzt die Originaldatei direkt vor Ort!

import javax.imageio.*;class A{class B extends java.util.Vector<C>{};class
C{int D,E;}C F(int D,int E){G=new C();G.D=D;G.E=E;return G;}static java.awt.image.BufferedImage
H;int I=H.getWidth(),J=H.getHeight(),K[][]=new int[I][J],L,M,N,O,P=~0xffff00,Q,D,E,R,S,T,U,V=255,W,X,Y;C
Z,G;public static void main(String[]a)throws Exception{java.io.File b=new
java.io.File(a[0]);H=ImageIO.read(b);new A().c();ImageIO.write(H,"PNG",b);}void
c(){B d=new B();for(L=0;L<I;L++)for(M=0;M<J;M++)if(e(L,M)!=1||!d.add(F(L,M)))K[L][M]=-1>>>1;while(M!=3)for(Z=d.remove(N=0),D=Z.D,E=Z.E;N<9;N++)if((M=e(T=D+N/3-1,U=E+N%3-1))>0&&K[T][U]>(L=K[D][E]+(T==D||U==E?10:14))&&d.add(F(T,U)))K[T][U]=L;for(D=G.D,E=G.E,R=D,S=E;M!=4;){H.createGraphics().drawLine(R,S,D,E);H.setRGB(R,S,P);N=0;T=2-M%2;U=0;for(L=0;L<Q;L++,N+=T)if((N+T)*(N+T)/30.0>Q-L+7||N-O>15-T){H.setRGB(R+L*(M/3-1),S+L*(M%3-1),P);U=L;O=N;N=0;}O=T*(U-Q);R=D;S=E;M=4;double
f=0,g;for(N=0;N<9;N++)for(L=1;e(T=R+L*(N/3-1),U=S+L*(N%3-1))>0;L++)if(f>(g=K[T][U]-K[R][S]+5*java.lang.Math.sqrt((R-T)*(R-T)+(S-U)*(S-U)))){f=g;D=T;E=U;M=N;Q=L;}}H.setRGB(R,S,P);}int
e(int D,int E){return D<0||D>=I||E<0||E>=J?0:(W=H.getRGB(D,E))==~V?1:W==V<<24?3:30<=(X=W>>16&V)&&X<=220&&X==(Y=W>>8&V)&&Y==(V&W)?2:0;}}

Stadt S + 93

Stadt S + 93


Gut gemacht! Wie lange dauert es, das Programm auszuführen?
nimi

Stadt: 2146 ms und Handschuh: 9643 ms. Aber mehr als die Hälfte der Zeit wird damit verbracht, das Image in ImageIO.write (..) auf die Festplatte zu schreiben. Es ist so schnell, weil es NICHT den Raum zwischen Position und Geschwindigkeit erforscht.
Bob Genom

1

Stern gekreuzter Rennläuferweg auf der Albtraumkarte

(laut populärer Anfrage)

(Code nicht aktualisiert, da die Änderungen trivial sind und die Performance-Only-Challenge nicht gespielt wird.)

Es tut mir leid, noch einen Eintrag zu posten, aber ich überschreite die Grenze von 30.000 Zeichen für den vorherigen.
Sagen Sie einfach das Wort und ich werde dieses löschen.

  1: 112 154 -> 127 154
  2: 127 154 -> 142 154
  3: 142 154 -> 151 161
  4: 151 161 -> 149 171
  5: 149 171 -> 143 190
  6: 143 190 -> 131 208
  7: 131 208 -> 125 219
  8: 125 219 -> 132 230
  9: 132 230 -> 147 243
 10: 147 243 -> 169 249
 11: 169 249 -> 185 248
 12: 185 248 -> 190 251
 13: 190 251 -> 190 263
 14: 190 263 -> 194 282
 15: 194 282 -> 201 289
 16: 201 289 -> 219 299
 17: 219 299 -> 240 297
 18: 240 297 -> 256 289
 19: 256 289 -> 271 267
 20: 271 267 -> 283 241
 21: 283 241 -> 297 228
 22: 297 228 -> 315 226
 23: 315 226 -> 343 229
 24: 343 229 -> 370 246
 25: 370 246 -> 393 263
 26: 393 263 -> 415 270
 27: 415 270 -> 435 267
 28: 435 267 -> 454 251
 29: 454 251 -> 464 240
 30: 464 240 -> 468 238
 31: 468 238 -> 472 247
 32: 472 247 -> 475 270
 33: 475 270 -> 481 302
 34: 481 302 -> 489 323
 35: 489 323 -> 489 343
 36: 489 343 -> 476 365
 37: 476 365 -> 455 380
 38: 455 380 -> 437 389
 39: 437 389 -> 432 398
 40: 432 398 -> 437 405
 41: 437 405 -> 450 411
 42: 450 411 -> 462 430
 43: 462 430 -> 465 454
 44: 465 454 -> 457 482
 45: 457 482 -> 453 503
 46: 453 503 -> 460 523
 47: 460 523 -> 469 530
 48: 469 530 -> 485 530
 49: 485 530 -> 505 526
 50: 505 526 -> 514 522
 51: 514 522 -> 523 533
 52: 523 533 -> 526 552
 53: 526 552 -> 527 572
 54: 527 572 -> 531 581
 55: 531 581 -> 535 577
 56: 535 577 -> 539 559
 57: 539 559 -> 542 527
 58: 542 527 -> 544 481
 59: 544 481 -> 550 425
 60: 550 425 -> 558 356
 61: 558 356 -> 565 296
 62: 565 296 -> 572 250
 63: 572 250 -> 575 213
 64: 575 213 -> 575 188
 65: 575 188 -> 565 168
 66: 565 168 -> 567 147
 67: 567 147 -> 569 141
 68: 569 141 -> 574 144
 69: 574 144 -> 582 158
 70: 582 158 -> 587 160
 71: 587 160 -> 592 148
 72: 592 148 -> 593 139
 73: 593 139 -> 597 141
 74: 597 141 -> 605 151
 75: 605 151 -> 616 165
 76: 616 165 -> 616 177
 77: 616 177 -> 609 181
 78: 609 181 -> 599 174
 79: 599 174 -> 592 168
 80: 592 168 -> 591 171
 81: 591 171 -> 589 188
 82: 589 188 -> 591 216
 83: 591 216 -> 595 257
 84: 595 257 -> 599 312
 85: 599 312 -> 605 367
 86: 605 367 -> 611 408
 87: 611 408 -> 614 438
 88: 614 438 -> 609 461
 89: 609 461 -> 597 477
 90: 597 477 -> 594 499
 91: 594 499 -> 604 520
 92: 604 520 -> 605 536
 93: 605 536 -> 598 556
 94: 598 556 -> 598 569
 95: 598 569 -> 610 580
 96: 610 580 -> 622 581
 97: 622 581 -> 629 582
 98: 629 582 -> 636 568
 99: 636 568 -> 642 541
100: 642 541 -> 645 526
101: 645 526 -> 645 517
102: 645 517 -> 634 505
103: 634 505 -> 636 493
104: 636 493 -> 639 467
105: 639 467 -> 641 427
106: 641 427 -> 644 373
107: 644 373 -> 648 309
108: 648 309 -> 651 258
109: 651 258 -> 652 218
110: 652 218 -> 652 190
111: 652 190 -> 647 167
112: 647 167 -> 645 147
113: 645 147 -> 645 138
114: 645 138 -> 655 134
115: 655 134 -> 670 137
116: 670 137 -> 675 142
117: 675 142 -> 676 156
118: 676 156 -> 679 168
119: 679 168 -> 680 178
120: 680 178 -> 667 188
121: 667 188 -> 661 195
122: 661 195 -> 663 208
123: 663 208 -> 667 233
124: 667 233 -> 671 271
125: 671 271 -> 676 322
126: 676 322 -> 681 386
127: 681 386 -> 687 445
128: 687 445 -> 693 492
129: 693 492 -> 695 530
130: 695 530 -> 698 554
131: 698 554 -> 701 565
132: 701 565 -> 704 564
133: 704 564 -> 707 548
134: 707 548 -> 709 518
135: 709 518 -> 710 474
136: 710 474 -> 716 420
137: 716 420 -> 720 355
138: 720 355 -> 724 305
139: 724 305 -> 724 266
140: 724 266 -> 726 239
141: 726 239 -> 727 225
142: 727 225 -> 729 224
143: 729 224 -> 732 235
144: 732 235 -> 734 260
145: 734 260 -> 734 296
146: 734 296 -> 734 347
147: 734 347 -> 734 413
148: 734 413 -> 734 479
149: 734 479 -> 734 533
150: 734 533 -> 735 573
151: 735 573 -> 735 599
152: 735 599 -> 732 616
153: 732 616 -> 729 618
154: 729 618 -> 713 618
155: 713 618 -> 683 618
156: 683 618 -> 638 618
157: 638 618 -> 578 618
158: 578 618 -> 503 618
159: 503 618 -> 413 618
160: 413 618 -> 320 618
161: 320 618 -> 242 618
162: 242 618 -> 179 618
163: 179 618 -> 131 618
164: 131 618 ->  98 618
165:  98 618 ->  80 618
166:  80 618 ->  72 617
167:  72 617 ->  69 606
168:  69 606 ->  69 585
169:  69 585 ->  69 549
170:  69 549 ->  69 498
171:  69 498 ->  69 432
172:  69 432 ->  69 351
173:  69 351 ->  69 276
174:  69 276 ->  69 216
175:  69 216 ->  69 171
176:  69 171 ->  69 141
177:  69 141 ->  69 126
178:  69 126 ->  75 118
179:  75 118 ->  87 118
180:  87 118 -> 114 118
181: 114 118 -> 156 118
182: 156 118 -> 213 118
183: 213 118 -> 285 118
184: 285 118 -> 372 118
185: 372 118 -> 474 118
186: 474 118 -> 591 118
187: 591 118 -> 701 120
188: 701 120 -> 800 120
189: 800 120 -> 884 120
190: 884 120 -> 953 120
191: 953 120 -> 1007 120
192: 1007 120 -> 1049 120
193: 1049 120 -> 1076 120
194: 1076 120 -> 1089 120
195: 1089 120 -> 1092 123
196: 1092 123 -> 1087 132
197: 1087 132 -> 1073 145
198: 1073 145 -> 1046 160
199: 1046 160 -> 1015 164
200: 1015 164 -> 986 156
201: 986 156 -> 964 150
202: 964 150 -> 954 147
203: 954 147 -> 951 151
204: 951 151 -> 959 156
205: 959 156 -> 981 162
206: 981 162 -> 996 169
207: 996 169 -> 1002 182
208: 1002 182 -> 997 194
209: 997 194 -> 986 208
210: 986 208 -> 988 222
211: 988 222 -> 995 226
212: 995 226 -> 1013 226
213: 1013 226 -> 1044 224
214: 1044 224 -> 1079 229
215: 1079 229 -> 1103 238
216: 1103 238 -> 1119 245
217: 1119 245 -> 1133 243
218: 1133 243 -> 1147 256
219: 1147 256 -> 1153 270
220: 1153 270 -> 1160 270
221: 1160 270 -> 1162 260
222: 1162 260 -> 1165 237
223: 1165 237 -> 1182 213
224: 1182 213 -> 1210 185
225: 1210 185 -> 1231 157
226: 1231 157 -> 1245 135
227: 1245 135 -> 1257 123
228: 1257 123 -> 1261 118
229: 1261 118 -> 1263 124
230: 1263 124 -> 1263 143
231: 1263 143 -> 1263 176
232: 1263 176 -> 1263 224
233: 1263 224 -> 1263 287
234: 1263 287 -> 1263 365
235: 1263 365 -> 1263 437
236: 1263 437 -> 1263 494
237: 1263 494 -> 1263 536
238: 1263 536 -> 1263 563
239: 1263 563 -> 1263 578
240: 1263 578 -> 1258 583
241: 1258 583 -> 1243 583
242: 1243 583 -> 1213 583
243: 1213 583 -> 1180 580
244: 1180 580 -> 1146 568
245: 1146 568 -> 1125 558
246: 1125 558 -> 1117 546
247: 1117 546 -> 1115 539
248: 1115 539 -> 1107 538
249: 1107 538 -> 1098 550
250: 1098 550 -> 1103 561
251: 1103 561 -> 1114 567
252: 1114 567 -> 1113 575
253: 1113 575 -> 1099 581
254: 1099 581 -> 1078 582
255: 1078 582 -> 1067 579
256: 1067 579 -> 1059 570
257: 1059 570 -> 1061 560
258: 1061 560 -> 1070 556
259: 1070 556 -> 1074 553
260: 1074 553 -> 1069 544
261: 1069 544 -> 1058 542
262: 1058 542 -> 1045 530
263: 1045 530 -> 1017 518
264: 1017 518 -> 990 509
265: 990 509 -> 972 501
266: 972 501 -> 955 500
267: 955 500 -> 938 514
268: 938 514 -> 914 528
269: 914 528 -> 902 543
270: 902 543 -> 895 562
271: 895 562 -> 893 572
272: 893 572 -> 880 581
273: 880 581 -> 869 579
274: 869 579 -> 858 571
275: 858 571 -> 844 567
276: 844 567 -> 834 558
277: 834 558 -> 830 553
278: 830 553 -> 832 540
279: 832 540 -> 829 529
280: 829 529 -> 821 522
281: 821 522 -> 819 517
282: 819 517 -> 831 512
283: 831 512 -> 838 506
284: 838 506 -> 843 488
285: 843 488 -> 843 473
286: 843 473 -> 844 469
287: 844 469 -> 856 469
288: 856 469 -> 883 469
289: 883 469 -> 906 458
290: 906 458 -> 918 449
291: 918 449 -> 924 433
292: 924 433 -> 920 418
293: 920 418 -> 904 406
294: 904 406 -> 883 404
295: 883 404 -> 859 402
296: 859 402 -> 844 394
297: 844 394 -> 843 385
298: 843 385 -> 841 366
299: 841 366 -> 838 361
300: 838 361 -> 828 363
301: 828 363 -> 813 356
302: 813 356 -> 807 343
303: 807 343 -> 805 321
304: 805 321 -> 810 298
305: 810 298 -> 813 285
306: 813 285 -> 821 282
307: 821 282 -> 842 280
308: 842 280 -> 868 278
309: 868 278 -> 887 280
310: 887 280 -> 898 288
311: 898 288 -> 898 300
312: 898 300 -> 895 314
313: 895 314 -> 901 324
314: 901 324 -> 909 324
315: 909 324 -> 917 318
316: 917 318 -> 921 311
317: 921 311 -> 930 314
318: 930 314 -> 947 322
319: 947 322 -> 956 329
320: 956 329 -> 962 339
321: 962 339 -> 970 337
322: 970 337 -> 973 338
323: 973 338 -> 978 334
324: 978 334 -> 992 326
325: 992 326 -> 1000 327
326: 1000 327 -> 1008 335
327: 1008 335 -> 1015 351
328: 1015 351 -> 1021 373
329: 1021 373 -> 1022 390
330: 1022 390 -> 1013 404
331: 1013 404 -> 1006 417
332: 1006 417 -> 1012 430
333: 1012 430 -> 1023 436
334: 1023 436 -> 1029 434
335: 1029 434 -> 1049 432
336: 1049 432 -> 1063 426
337: 1063 426 -> 1079 425
338: 1079 425 -> 1093 418
339: 1093 418 -> 1113 417
340: 1113 417 -> 1128 414
341: 1128 414 -> 1139 421
342: 1139 421 -> 1154 426
343: 1154 426 -> 1158 430
344: 1158 430 -> 1149 436
345: 1149 436 -> 1130 438
346: 1130 438 -> 1108 442
347: 1108 442 -> 1096 447
348: 1096 447 -> 1087 441
349: 1087 441 -> 1079 443
350: 1079 443 -> 1072 446
351: 1072 446 -> 1060 454
352: 1060 454 -> 1052 461
353: 1052 461 -> 1034 463
354: 1034 463 -> 1016 463
355: 1016 463 -> 1010 464
356: 1010 464 -> 1011 472
357: 1011 472 -> 1012 479
358: 1012 479 -> 1025 484
359: 1025 484 -> 1048 488
360: 1048 488 -> 1083 491
361: 1083 491 -> 1119 505
362: 1119 505 -> 1154 520
363: 1154 520 -> 1183 530
364: 1183 530 -> 1201 537
365: 1201 537 -> 1209 539
366: 1209 539 -> 1209 535
367: 1209 535 -> 1209 517
368: 1209 517 -> 1209 484
369: 1209 484 -> 1210 437
370: 1210 437 -> 1210 392
371: 1210 392 -> 1210 362
372: 1210 362 -> 1210 347
373: 1210 347 -> 1203 340
374: 1203 340 -> 1184 333
375: 1184 333 -> 1156 320
376: 1156 320 -> 1116 306
377: 1116 306 -> 1069 285
378: 1069 285 -> 1023 265
379: 1023 265 -> 985 249
380: 985 249 -> 955 235
381: 955 235 -> 933 227
382: 933 227 -> 923 221
383: 923 221 -> 923 211
384: 923 211 -> 917 195
385: 917 195 -> 901 176
386: 901 176 -> 881 159
387: 881 159 -> 848 144
388: 848 144 -> 815 144
389: 815 144 -> 788 153
390: 788 153 -> 769 169
391: 769 169 -> 764 185
392: 764 185 -> 766 209
393: 766 209 -> 767 247
394: 767 247 -> 769 299
395: 769 299 -> 769 362
396: 769 362 -> 769 440
397: 769 440 -> 769 503
398: 769 503 -> 769 551
399: 769 551 -> 769 584
400: 769 584 -> 769 605
401: 769 605 -> 770 613
402: 770 613 -> 780 616
403: 780 616 -> 801 616
404: 801 616 -> 837 616
405: 837 616 -> 888 616
406: 888 616 -> 954 616
407: 954 616 -> 1035 616
408: 1035 616 -> 1113 616
409: 1113 616 -> 1176 616
410: 1176 616 -> 1224 616
411: 1224 616 -> 1257 616
412: 1257 616 -> 1278 616
413: 1278 616 -> 1294 607
414: 1294 607 -> 1295 598
415: 1295 598 -> 1295 577
416: 1295 577 -> 1295 541
417: 1295 541 -> 1295 490
418: 1295 490 -> 1295 424
419: 1295 424 -> 1295 343
420: 1295 343 -> 1295 265
421: 1295 265 -> 1295 202
422: 1295 202 -> 1295 154
423: 1295 154 -> 1295 121
424: 1295 121 -> 1295 100
425: 1295 100 -> 1294  92
426: 1294  92 -> 1283  89
427: 1283  89 -> 1262  89
428: 1262  89 -> 1226  89
429: 1226  89 -> 1175  89
430: 1175  89 -> 1109  89
431: 1109  89 -> 1028  89
432: 1028  89 -> 938  89
433: 938  89 -> 860  89
434: 860  89 -> 797  89
435: 797  89 -> 749  89
436: 749  89 -> 716  89
437: 716  89 -> 698  89
438: 698  89 -> 690  94
439: 690  94 -> 682 102
440: 682 102 -> 673 100
441: 673 100 -> 661  89
442: 661  89 -> 646  89
443: 646  89 -> 616  89
444: 616  89 -> 571  89
445: 571  89 -> 517  89
446: 517  89 -> 478  89
447: 478  89 -> 454  89
448: 454  89 -> 442  92
449: 442  92 -> 432 102
450: 432 102 -> 423 100
451: 423 100 -> 411  89
452: 411  89 -> 396  89
453: 396  89 -> 381  92
454: 381  92 -> 371 102
455: 371 102 -> 362 100
456: 362 100 -> 349  89
457: 349  89 -> 334  89
458: 334  89 -> 309  91
459: 309  91 -> 298  92
460: 298  92 -> 288 102
461: 288 102 -> 279 100
462: 279 100 -> 267  89
463: 267  89 -> 252  89
464: 252  89 -> 222  89
465: 222  89 -> 177  89
466: 177  89 -> 123  89
467: 123  89 ->  84  89
468:  84  89 ->  60  89
469:  60  89 ->  48  89
470:  48  89 ->  42  97
471:  42  97 ->  42 112
472:  42 112 ->  42 142
473:  42 142 ->  42 187
474:  42 187 ->  42 247
475:  42 247 ->  42 322
476:  42 322 ->  42 409
477:  42 409 ->  42 484
478:  42 484 ->  42 544
479:  42 544 ->  42 589
480:  42 589 ->  42 619
481:  42 619 ->  42 634
482:  42 634 ->  47 640
483:  47 640 ->  59 640
484:  59 640 ->  86 640
485:  86 640 -> 128 640
486: 128 640 -> 185 640
487: 185 640 -> 257 640
488: 257 640 -> 344 640
489: 344 640 -> 446 640
490: 446 640 -> 563 640
491: 563 640 -> 690 640
492: 690 640 -> 816 639
493: 816 639 -> 930 639
494: 930 639 -> 1029 639
495: 1029 639 -> 1113 639
496: 1113 639 -> 1182 639
497: 1182 639 -> 1236 639
498: 1236 639 -> 1275 639
499: 1275 639 -> 1300 639
500: 1300 639 -> 1316 633
501: 1316 633 -> 1320 630
502: 1320 630 -> 1322 615
503: 1322 615 -> 1322 588
504: 1322 588 -> 1322 546
505: 1322 546 -> 1322 489
506: 1322 489 -> 1322 417
507: 1322 417 -> 1322 330
508: 1322 330 -> 1322 252
509: 1322 252 -> 1322 186
510: 1322 186 -> 1322 135
511: 1322 135 -> 1322  99
512: 1322  99 -> 1322  78
513: 1322  78 -> 1320  68
514: 1320  68 -> 1310  65
515: 1310  65 -> 1289  65
516: 1289  65 -> 1253  65
517: 1253  65 -> 1208  65
518: 1208  65 -> 1178  65
519: 1178  65 -> 1163  65
520: 1163  65 -> 1155  71
521: 1155  71 -> 1149  76
522: 1149  76 -> 1135  74
523: 1135  74 -> 1111  74
524: 1111  74 -> 1102  74
525: 1102  74 -> 1091  65
526: 1091  65 -> 1076  65
527: 1076  65 -> 1046  65
528: 1046  65 -> 1013  65
529: 1013  65 -> 992  65
530: 992  65 -> 986  65
531: 986  65 -> 975  56
532: 975  56 -> 960  56
533: 960  56 -> 930  56
534: 930  56 -> 899  58
535: 899  58 -> 878  58
536: 878  58 -> 870  59
537: 870  59 -> 864  65
538: 864  65 -> 849  65
539: 849  65 -> 819  65
540: 819  65 -> 774  65
541: 774  65 -> 714  65
542: 714  65 -> 651  65
543: 651  65 -> 603  65
544: 603  65 -> 570  65
545: 570  65 -> 552  65
546: 552  65 -> 546  65
547: 546  65 -> 535  56
548: 535  56 -> 520  56
549: 520  56 -> 492  58
550: 492  58 -> 478  59
551: 478  59 -> 472  65
552: 472  65 -> 457  65
553: 457  65 -> 427  65
554: 427  65 -> 382  65
555: 382  65 -> 322  65
556: 322  65 -> 265  65
557: 265  65 -> 223  65
558: 223  65 -> 193  65
559: 193  65 -> 178  65
560: 178  65 -> 170  71
561: 170  71 -> 164  76
562: 164  76 -> 156  74
563: 156  74 -> 145  65
564: 145  65 -> 130  65
565: 130  65 -> 109  65
566: 109  65 -> 103  65
567: 103  65 ->  92  56
568:  92  56 ->  77  56
569:  77  56 ->  65  59
570:  65  59 ->  57  68
571:  57  68 ->  46  67
572:  46  67 ->  29  65
573:  29  65 ->  20  68
574:  20  68 ->  17  80
575:  17  80 ->  17 104
576:  17 104 ->  17 143
577:  17 143 ->  17 197
578:  17 197 ->  17 266
579:  17 266 ->  17 350
580:  17 350 ->  19 435
581:  19 435 ->  19 507
582:  19 507 ->  19 564
583:  19 564 ->  19 606
584:  19 606 ->  19 633
585:  19 633 ->  19 648
586:  19 648 ->  33 662
587:  33 662 ->  48 664
588:  48 664 ->  76 664
589:  76 664 -> 118 664
590: 118 664 -> 175 664
591: 175 664 -> 245 664
592: 245 664 -> 328 664
593: 328 664 -> 423 663
594: 423 663 -> 532 661
595: 532 661 -> 654 661
596: 654 661 -> 784 662
597: 784 662 -> 900 662
598: 900 662 -> 1002 662
599: 1002 662 -> 1089 662
600: 1089 662 -> 1166 662
601: 1166 662 -> 1231 664
602: 1231 664 -> 1283 664
603: 1283 664 -> 1320 664
604: 1320 664 -> 1344 662
605: 1344 662 -> 1355 662
606: 1355 662 -> 1359 654
607: 1359 654 -> 1372 640
608: 1372 640 -> 1377 630
609: 1377 630 -> 1376 613
610: 1376 613 -> 1376 586
611: 1376 586 -> 1376 550
612: 1376 550 -> 1374 527
613: 1374 527 -> 1374 517
614: 1374 517 -> 1381 508
615: 1381 508 -> 1381 494
616: 1381 494 -> 1370 477
617: 1370 477 -> 1372 459
618: 1372 459 -> 1370 432
619: 1370 432 -> 1367 418
620: 1367 418 -> 1354 401
621: 1354 401 -> 1355 384
622: 1355 384 -> 1351 361
623: 1351 361 -> 1343 330
624: 1343 330 -> 1344 295
625: 1344 295 -> 1346 271
626: 1346 271 -> 1347 256
627: 1347 256 -> 1336 240
628: 1336 240 -> 1336 224
629: 1336 224 -> 1345 210
630: 1345 210 -> 1341 196
631: 1341 196 -> 1338 172
632: 1338 172 -> 1340 153
633: 1340 153 -> 1349 132
634: 1349 132 -> 1345 109
635: 1345 109 -> 1347  80
636: 1347  80 -> 1356  59
637: 1356  59 -> 1359  42
638: 1359  42 -> 1356  34
639: 1356  34 -> 1341  29
640: 1341  29 -> 1316  29
641: 1316  29 -> 1276  29
642: 1276  29 -> 1221  29
643: 1221  29 -> 1177  32
644: 1177  32 -> 1143  31
645: 1143  31 -> 1118  24
646: 1118  24 -> 1084  23
647: 1084  23 -> 1045  31
648: 1045  31 -> 1011  29
649: 1011  29 -> 991  26
650: 991  26 -> 972  19
651: 972  19 -> 953  22
652: 953  22 -> 934  31
653: 934  31 -> 909  31
654: 909  31 -> 872  29
655: 872  29 -> 822  29
656: 822  29 -> 775  31
657: 775  31 -> 742  32
658: 742  32 -> 713  37
659: 713  37 -> 683  36
660: 683  36 -> 650  40
661: 650  40 -> 619  35
662: 619  35 -> 577  34
663: 577  34 -> 547  32
664: 547  32 -> 505  32
665: 505  32 -> 455  25
666: 455  25 -> 401  23
667: 401  23 -> 346  22
668: 346  22 -> 296  31
669: 296  31 -> 240  32
670: 240  32 -> 172  31
671: 172  31 ->  91  31
672:  91  31 ->  14  25


Eine zweite Antwort scheint die einzige Lösung zu sein. Ihr Weg ist mit einer durchschnittlichen Beschleunigung von 12,6 in Ordnung.
Logic Knight

1

Sunday Driver, Python 2, 3242

Minimierter Code = 2382 Byte

Leistung: Stadt = 86 Hindernisse = 46 Rennstrecke = 188 Handschuh = 1092

Hier ist mein Proof-of-Concept-Programm, das zeigen soll, dass eine Lösung möglich ist. Es muss optimiert und besser golfen werden.

Operation

  • Erstellen Sie eine Datenstruktur mit Entfernungsringen, die vom Ziel entfernt sind (einfache Ableitung von A *, wie z. B. Überflutung).

  • Suchen Sie die kurze Reihe von geraden Linien zum Ziel, die keine Pixel ohne Spur kreuzen.

  • Beschleunigen und bremsen Sie für jede Gerade, um die Kurven zu minimieren.

Golfed (minified) Code

import pygame as P,sys,random
Z=255
I=int
R=range

X=sys.argv[1]
pic=P.image.load(X)
show=P.display.flip
W,H=pic.get_size()
M=P.display.set_mode((W,H))
M.blit(pic,(0,0))
show()
U=complex
ORTH=[U(-1,0),U(1,0),U(0,-1),U(0,1)]
def draw(line,O):
 for p in line:
  M.set_at((I(p.real),I(p.imag)),O)
def plot(p,O):
 M.set_at((I(p.real),I(p.imag)),O)
def J(p):
 return abs(I(p.real))+abs(I(p.imag))
locs=[(x,y)for x in R(W)for y in R(H)]
n={}
for p in locs:
 O=tuple(M.get_at(p))[:3]
 if O not in n:
  n[O]=set()
 n[O].add(U(p[0],p[1]))
z=set()
for c in n:
 if c[0]==c[1]==c[2]and 30<=c[0]<=220 or c==(0,0,0)or c==(Z,Z,0):
  z|=n[c]
first=next(iter(n[(0,0,0)]))
ring=set([first])
s={0:ring}
g={first:0}
T=set()
G=0
done=0
while not done:
 G+=1
 T|=ring
 D=set()
 for dot in ring:
  for K in[dot+diff for diff in ORTH]:
   if K in n[(Z,Z,0)]:
    V=K;done=1
   if K in z and K not in T:
    D.add(K);g[K]=G
 ring=D
 s[G]=ring
def A(p1,p2):
 x1,y1=I(p1.real),I(p1.imag)
 x2,y2=I(p2.real),I(p2.imag)
 dx=x2-x1
 dy=y2-y1
 line=[]
 if abs(dx)>abs(dy):
  m=1.0*dy/dx
  line=[U(x,I(m*(x-x1)+y1+.5))for x in R(x1,x2,cmp(dx,0))]
 else:
  m=1.0*dx/dy
  line=[U(I(m*(y-y1)+x1+.5),y)for y in R(y1,y2,cmp(dy,0))]
 return line+[U(x2,y2)]
def f(p1,p2):
 return all(p in z for p in A(p1,p2))
def a(j,G):
 l=list(s[G])
 for F in R(150):
  w=random.choice(l)
  if f(j,w):
   return w
 return None
def d(j):
 u=g[j]
 E=k=0
 r=j
 while 1:
  w=a(j,k)
  if w:
   u=k;r=w
  else:
   E=k
  k=(u+E)/2
  if k==u or k==E:
   break
 return r
def h(p1,p2):
 if abs(p2-p1)<9:
  return p2
 line=A(p1,p2)
 tries=min(20,len(line)/2)
 test=[line[-i]for i in R(1,tries)]
 q=[(p,d(p))for p in test]
 rank=[(abs(p3-p)+abs(p-p1),p)for p,p3 in q]
 return max(rank)[1]
o=V
path=[V]
while g[o]>0:
 o=d(o)
 if o not in n[(0,0,0)]:
  o=h(path[-1],o)
 path.append(o)
 if o in n[(0,0,0)]:
  break
def t(line,N):
 v=[]
 S=len(line)/2+2
 base=i=0
 b=0
 while i<len(line):
  C=(i<S)
  Q=line[i]-line[base]
  accel=Q-N
  L=(J(accel)<=15)
  if L:
   b=1
  if C:
   if b and not L:
    i-=1;v.append(i);N=Q;base=i;b=0
  else:
   if b and J(Q)>13:
    v.append(i);N=Q;base=i;b=0
  i+=1
 v.append(i-1)
 return v,Q
turns=0
vel=U(0,0)
for V,stop in zip(path,path[1:]):
 line=A(V,stop)
 Y,vel=t(line,vel)
 turns+=len(Y)
 draw(line,(Z,Z,Z))
 plot(line[0],(0,0,Z))
 for m in Y:
  plot(line[m],(0,0,Z))
B=X.replace('.','%u.'%turns)
P.image.save(M,B)

Beispiele

Stadt

Rennstrecke

Hindernisse

Stulpe


Endlich etwas, das kein Brute-Force-Pathing beinhaltet. Ich bin mir ziemlich sicher, dass Sie sowohl an Ästhetik als auch an Effizienz gewinnen können, wenn Sie die Ecken mit einem einfachen Nachoptimierer glätten.

Verlockend, aber es würde nicht gut aussehen, wenn ich in meiner eigenen Konkurrenz zu gut abschneiden würde. Ich dachte nur, ich würde meinen Proof-of-Concept-Code als alternativen Ansatz veröffentlichen.
Logic Knight

Komm schon, sei nicht schüchtern :)

In meiner Freizeit stelle ich mich einer neuen Herausforderung. Ich denke, es könnte dir gefallen. Sollte in den nächsten Tagen veröffentlicht werden.
Logic Knight

Ich sollte in der Zwischenzeit auf dem C ++ Renner
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.