C #, 10039 28164 Ziffern
6 0{28157} 169669
Bearbeiten: Ich habe ein anderes Programm basierend auf dem Qualtagh-Algorithmus mit einigen geringfügigen Änderungen erstellt:
- Ich suche nach den Zahlen der Form L000 ... 000R, wobei L links zusammengesetzt ist, R rechts zusammengesetzt ist. Ich habe zugelassen, dass die linke zusammengesetzte Zahl L mehrere Stellen hat, obwohl dies meist eine stilistische Änderung ist und die Effizienz des Algorithmus wahrscheinlich nicht beeinträchtigt.
- Ich habe Multithreading hinzugefügt, um die Suche zu beschleunigen.
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
using System.Threading;
using System.Threading.Tasks;
using Mpir.NET;
class Program
{
const int PrimeNotFound = int.MaxValue;
private static BitArray _primeSieve;
private static HashSet<Tuple<int, int>> _templatesToSkip = new HashSet<Tuple<int, int>>();
static void Main(string[] args)
{
int bestDigitCount = 0;
foreach (Tuple<int, int> template in GetTemplates())
{
int left = template.Item1;
int right = template.Item2;
if (SkipTemplate(left, right))
continue;
int zeroCount = GetZeroCountOfPrime(left, right);
if (zeroCount != PrimeNotFound)
{
int digitCount = left.ToString().Length + right.ToString().Length + zeroCount;
if (digitCount >= bestDigitCount)
{
string primeStr = left + " 0{" + zeroCount + "} " + right;
Console.WriteLine("testing " + primeStr);
bool isFragile = IsFragile(left, right, zeroCount);
Console.WriteLine(primeStr + " is fragile: " + isFragile);
if (isFragile)
bestDigitCount = digitCount;
}
_templatesToSkip.Add(template);
}
}
}
private static int GetZeroCountOfPrime(int left, int right)
{
_zeroCount = 0;
int threadCount = Environment.ProcessorCount;
Task<int>[] tasks = new Task<int>[threadCount];
for (int i = 0; i < threadCount; i++)
tasks[i] = Task.Run(() => InternalGetZeroCountOfPrime(left, right));
Task.WaitAll(tasks);
return tasks.Min(task => task.Result);
}
private static int _zeroCount;
private static int InternalGetZeroCountOfPrime(int left, int right)
{
const int maxZeroCount = 40000;
int zeroCount = Interlocked.Increment(ref _zeroCount);
while (zeroCount <= maxZeroCount)
{
if (zeroCount % 1000 == 0)
Console.WriteLine("testing " + left + " 0{" + zeroCount + "} " + right);
if (IsPrime(left, right, zeroCount))
{
Interlocked.Add(ref _zeroCount, maxZeroCount);
return zeroCount;
}
else
zeroCount = Interlocked.Increment(ref _zeroCount);
}
return PrimeNotFound;
}
private static bool SkipTemplate(int left, int right)
{
for (int leftDiv = 1; leftDiv <= left; leftDiv *= 10)
for (int rightDiv = 1; rightDiv <= right; rightDiv *= 10)
if (_templatesToSkip.Contains(Tuple.Create(left / leftDiv, right % (rightDiv * 10))))
return true;
return false;
}
private static bool IsPrime(int left, int right, int zeroCount)
{
return IsPrime(left.ToString() + new string('0', zeroCount) + right.ToString());
}
private static bool IsPrime(string left, string right, int zeroCount)
{
return IsPrime(left + new string('0', zeroCount) + right);
}
private static bool IsPrime(string s)
{
using (mpz_t n = new mpz_t(s))
{
return n.IsProbablyPrimeRabinMiller(20);
}
}
private static bool IsFragile(int left, int right, int zeroCount)
{
string leftStr = left.ToString();
string rightStr = right.ToString();
for (int startIndex = 0; startIndex < leftStr.Length - 1; startIndex++)
for (int count = 1; count < leftStr.Length - startIndex; count++)
if (IsPrime(leftStr.Remove(startIndex, count), rightStr, zeroCount))
return false;
for (int startIndex = 1; startIndex < rightStr.Length; startIndex++)
for (int count = 1; count <= rightStr.Length - startIndex; count++)
if (IsPrime(leftStr, rightStr.Remove(startIndex, count), zeroCount))
return false;
return true;
}
private static IEnumerable<Tuple<int, int>> GetTemplates()
{
const int maxDigitCount = 8;
PreparePrimeSieve((int)BigInteger.Pow(10, maxDigitCount));
for (int digitCount = 2; digitCount <= maxDigitCount; digitCount++)
{
for (int leftCount = 1; leftCount < digitCount; leftCount++)
{
int rightCount = digitCount - leftCount;
int maxLeft = (int)BigInteger.Pow(10, leftCount);
int maxRight = (int)BigInteger.Pow(10, rightCount);
for (int left = maxLeft / 10; left < maxLeft; left++)
for (int right = maxRight / 10; right < maxRight; right++)
if (IsValidTemplate(left, right, leftCount, rightCount))
yield return Tuple.Create(left, right);
}
}
}
private static void PreparePrimeSieve(int limit)
{
_primeSieve = new BitArray(limit + 1, true);
_primeSieve[0] = false;
_primeSieve[1] = false;
for (int i = 2; i * i <= limit; i++)
if (_primeSieve[i])
for (int j = i * i; j <= limit; j += i)
_primeSieve[j] = false;
}
private static bool IsValidTemplate(int left, int right, int leftCount, int rightCount)
{
int rightDigit = right % 10;
if ((rightDigit != 1) && (rightDigit != 9))
return false;
if (left % 10 == 0)
return false;
if ((left + right) % 3 == 0)
return false;
if (!Coprime(left, right))
return false;
int leftDiv = 1;
for (int i = 0; i <= leftCount; i++)
{
int rightDiv = 1;
for (int j = 0; j <= rightCount; j++)
{
int combination = left / leftDiv * rightDiv + right % rightDiv;
if (_primeSieve[combination])
return false;
rightDiv *= 10;
}
leftDiv *= 10;
}
return true;
}
private static bool Coprime(int a, int b)
{
while (b != 0)
{
int t = b;
b = a % b;
a = t;
}
return a == 1;
}
}
Alte Antwort:
8 0{5436} 4 0{4600} 1
Dies sind einige bemerkenswerte Muster für fragile Primzahlen:
600..00X00..009
900..00X00..009
800..00X00..001
999..99X99..999
wobei X 1, 2, 4, 5, 7 oder 8 sein kann.
Für solche Zahlen müssen wir nur (Länge - 1) mögliche Remove
Operationen berücksichtigen . Die anderen Remove
Operationen erzeugen entweder Duplikate oder offensichtlich zusammengesetzte Zahlen. Ich habe versucht, nach solchen Zahlen mit bis zu 800 Ziffern zu suchen, und festgestellt, dass 4 Muster häufiger auftreten als die anderen: 8007001, 8004001, 9997999 und 6004009. Da Emil und Jakube das Muster 999X999 verwenden, habe ich mich für 8004001 entschieden etwas Abwechslung hinzufügen.
Ich habe dem Algorithmus die folgenden Optimierungen hinzugefügt:
- Ich beginne mit der Suche nach Zahlen mit 7000 Stellen und erhöhe die Länge jedes Mal um 1500, wenn eine fragile Primzahl gefunden wird. Wenn es keine fragile Primzahl mit einer bestimmten Länge gibt, dann erhöhe ich sie um 1. 7000 und 1500 sind nur willkürliche Zahlen, die angemessen schienen.
- Ich verwende Multithreading, um gleichzeitig nach Zahlen mit unterschiedlicher Länge zu suchen.
- Das Ergebnis jeder Prüfung wird in einer Hash-Tabelle gespeichert, um Doppelprüfungen zu vermeiden.
- Ich verwende die Miller-Rabin-Implementierung von Mpir.NET , die sehr schnell ist (MPIR ist ein Fork von GMP).
using System;
using System.Collections.Concurrent;
using System.Threading.Tasks;
using Mpir.NET;
class Program
{
const string _template = "8041";
private static ConcurrentDictionary<Tuple<int, int>, byte> _compositeNumbers = new ConcurrentDictionary<Tuple<int, int>, byte>();
private static ConcurrentDictionary<int, int> _leftPrimes = new ConcurrentDictionary<int, int>();
private static ConcurrentDictionary<int, int> _rightPrimes = new ConcurrentDictionary<int, int>();
static void Main(string[] args)
{
int threadCount = Environment.ProcessorCount;
Task[] tasks = new Task[threadCount];
for (int i = 0; i < threadCount; i++)
{
int index = i;
tasks[index] = Task.Run(() => SearchFragilePrimes());
}
Task.WaitAll(tasks);
}
private const int _lengthIncrement = 1500;
private static int _length = 7000;
private static object _lengthLock = new object();
private static object _consoleLock = new object();
private static void SearchFragilePrimes()
{
int length;
lock (_lengthLock)
{
_length++;
length = _length;
}
while (true)
{
lock (_consoleLock)
{
Console.WriteLine("{0:T}: length = {1}", DateTime.Now, length);
}
bool found = false;
for (int rightCount = 1; rightCount <= length - 2; rightCount++)
{
int leftCount = length - rightCount - 1;
if (IsFragilePrime(leftCount, rightCount))
{
lock (_consoleLock)
{
Console.WriteLine("{0:T}: {1} {2}{{{3}}} {4} {2}{{{5}}} {6}",
DateTime.Now, _template[0], _template[1], leftCount - 1,
_template[2], rightCount - 1, _template[3]);
}
found = true;
break;
}
}
lock (_lengthLock)
{
if (found && (_length < length + _lengthIncrement / 2))
_length += _lengthIncrement;
else
_length++;
length = _length;
}
}
}
private static bool IsFragilePrime(int leftCount, int rightCount)
{
int count;
if (_leftPrimes.TryGetValue(leftCount, out count))
if (count < rightCount)
return false;
if (_rightPrimes.TryGetValue(rightCount, out count))
if (count < leftCount)
return false;
if (!IsPrime(leftCount, rightCount))
return false;
for (int i = 0; i < leftCount; i++)
if (IsPrime(i, rightCount))
return false;
for (int i = 0; i < rightCount; i++)
if (IsPrime(leftCount, i))
return false;
return true;
}
private static bool IsPrime(int leftCount, int rightCount)
{
Tuple<int, int> tuple = Tuple.Create(leftCount, rightCount);
if (_compositeNumbers.ContainsKey(tuple))
return false;
using (mpz_t n = new mpz_t(BuildStr(leftCount, rightCount)))
{
bool result = n.IsProbablyPrimeRabinMiller(20);
if (result)
{
_leftPrimes.TryAdd(leftCount, rightCount);
_rightPrimes.TryAdd(rightCount, leftCount);
}
else
_compositeNumbers.TryAdd(tuple, 0);
return result;
}
}
private static string BuildStr(int leftCount, int rightCount)
{
char[] chars = new char[leftCount + rightCount + 1];
for (int i = 0; i < chars.Length; i++)
chars[i] = _template[1];
chars[0] = _template[0];
chars[leftCount + rightCount] = _template[3];
chars[leftCount] = _template[2];
return new string(chars);
}
}