Sudoku-Komprimierung


35

Ihre Aufgabe ist es, ein Programm (oder zwei separate Programme) in einer beliebigen Sprache zu schreiben, die:

  1. Kann ein fertiges Sudoku-Board als Eingabe nehmen (in einem beliebigen logischen Format) und es in eine Zeichenfolge komprimieren
  2. Kann den komprimierten String als Eingabe nehmen und dekomprimieren, um genau dasselbe fertige Sudoku-Board zu erhalten (Ausgabe in einem beliebigen logischen Format von 9 Zeilen)

Hinweis: Verwenden Sie die Regeln von Sudoku zu Ihrem Vorteil. das ist die idee hinter dieser herausforderung.
Sudoku-Regeln auf Wikipedia

Regeln

  • In der komprimierten Ausgabe sind nur druckbare ASCII-Zeichen (32 - 126) zulässig (z. B. keine Multibyte-Zeichen ).
  • Sie können davon ausgehen, dass es sich bei der Eingabe um eine gültige 3x3-Sudoku-Karte handelt (normale Regeln, keine Variationen).
  • Ich werde kein Zeitlimit festlegen, aber keinen Brute-Force-Algorithmus erstellen. Alternativ können Einreicher ihre Einreichungen vor dem Posten testen (Dank an Jan Dvorak).

Wenn Sie Fragen oder Bedenken haben, können Sie in den Kommentaren um Klarstellung bitten oder Vorschläge machen.

Gewinnbedingungen

Score = Summe der Anzahl der Zeichen aus allen zehn Testfällen

Die niedrigste Punktzahl gewinnt.

Testfälle

Sie können diese verwenden, um zu testen, wie gut Ihr Programm funktioniert.

9 7 3 5 8 1 4 2 6
5 2 6 4 7 3 1 9 8
1 8 4 2 9 6 7 5 3
2 4 7 8 6 5 3 1 9
3 9 8 1 2 4 6 7 5
6 5 1 7 3 9 8 4 2
8 1 9 3 4 2 5 6 7
7 6 5 9 1 8 2 3 4
4 3 2 6 5 7 9 8 1

7 2 4 8 6 5 1 9 3
1 6 9 2 4 3 8 7 5
3 8 5 1 9 7 2 4 6
8 9 6 7 2 4 3 5 1
2 7 3 9 5 1 6 8 4
4 5 1 3 8 6 9 2 7
5 4 2 6 3 9 7 1 8
6 1 8 5 7 2 4 3 9
9 3 7 4 1 8 5 6 2

1 5 7 6 8 2 3 4 9
4 3 2 5 1 9 6 8 7
6 9 8 3 4 7 2 5 1
8 2 5 4 7 6 1 9 3
7 1 3 9 2 8 4 6 5
9 6 4 1 3 5 7 2 8
5 4 1 2 9 3 8 7 6
2 8 9 7 6 1 5 3 4
3 7 6 8 5 4 9 1 2

8 3 5 4 1 6 9 2 7
2 9 6 8 5 7 4 3 1
4 1 7 2 9 3 6 5 8
5 6 9 1 3 4 7 8 2
1 2 3 6 7 8 5 4 9
7 4 8 5 2 9 1 6 3
6 5 2 7 8 1 3 9 4
9 8 1 3 4 5 2 7 6
3 7 4 9 6 2 8 1 5

6 2 8 4 5 1 7 9 3
5 9 4 7 3 2 6 8 1
7 1 3 6 8 9 5 4 2
2 4 7 3 1 5 8 6 9
9 6 1 8 2 7 3 5 4
3 8 5 9 6 4 2 1 7
1 5 6 2 4 3 9 7 8
4 3 9 5 7 8 1 2 6
8 7 2 1 9 6 4 3 5

1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6
2 1 4 3 6 5 8 9 7
3 6 5 8 9 7 2 1 4
8 9 7 2 1 4 3 6 5
5 3 1 6 4 8 9 7 2
6 4 8 9 7 2 5 3 1
9 7 2 5 3 1 6 4 8

1 4 5 7 9 2 8 3 6
3 7 6 5 8 4 1 9 2
2 9 8 3 6 1 7 5 4
7 3 1 9 2 8 6 4 5
8 5 9 6 4 7 3 2 1
4 6 2 1 3 5 9 8 7
6 2 4 8 7 3 5 1 9
5 8 7 4 1 9 2 6 3
9 1 3 2 5 6 4 7 8

5 2 7 4 1 6 9 3 8
8 6 4 3 2 9 1 5 7
1 3 9 5 7 8 6 4 2
2 9 1 8 5 4 3 7 6
3 4 8 6 9 7 5 2 1
6 7 5 1 3 2 4 8 9
7 1 2 9 4 5 8 6 3
4 8 3 2 6 1 7 9 5
9 5 6 7 8 3 2 1 4

2 4 6 7 1 3 9 8 5
1 8 5 4 9 6 7 3 2
9 3 7 8 2 5 1 4 6
6 7 8 5 4 2 3 9 1
4 9 3 1 6 8 2 5 7
5 1 2 3 7 9 4 6 8
8 2 4 9 5 7 6 1 3
7 5 9 6 3 1 8 2 4
3 6 1 2 8 4 5 7 9

8 6 1 2 9 4 5 7 3
4 7 5 3 1 8 6 9 2
3 9 2 5 6 7 8 1 4
2 3 6 4 5 9 7 8 1
1 5 4 7 8 3 2 6 9
9 8 7 6 2 1 3 4 5
5 2 9 1 7 6 4 3 8
6 4 8 9 3 2 1 5 7
7 1 3 8 4 5 9 2 6

Wir danken http://www.opensky.ca/~jdhildeb/software/sudokugen/ für einige davon

Wenn Sie Probleme mit den Testfällen haben, teilen Sie mir dies bitte mit.


5
Es sollte auch eine zeitliche Begrenzung geben, um zu verhindern, dass eine Lösung jede Platinenkonfiguration auflistet und prüft, ob es sich um eines der 6670903752021072936960 möglichen gelösten Sudoku-Gitter handelt .
Feersum

3
Möglicherweise möchten Sie die Wertung ändern. Derzeit hindert mich nichts daran, die Testfälle in 1-Zeichen-Codes festzukodieren und nur 81-
Zeichen

4
@TwiNight abgesehen davon, dass es eine Standardlücke ist, meinst du?
John Dvorak

4
Ungeachtet meiner Antwort unten denke ich, dass der beste Weg, dies zu lösen, darin besteht, einen Sudoku-Löser zu schreiben und dann die maximale Anzahl von Ziffern aus dem Raster zu entfernen, sodass das Rätsel noch lösbar ist (das sollten alle bis auf vier oder fünf Zahlen sein). Dann komprimiere das. Der Dekomprimierer enthält auch den Löser.
abligh

4
@kasperd es ist in der Tat schwierig, die Linie zu ziehen (siehe die fudgeUnterroutine in meiner zweiten Antwort, die 12 Punkte gewinnt). Ein fairerer Test wäre, vorauszusetzen, dass (a) die Testlösungen funktionieren, (b) auf 1.000 zufällig generierten Sudoku-Gittern punkten und die Antwort durch 100 teilen. Ich glaube, das Beste, was man mit zufälligen Daten machen kann, ist etwa 110, basierend auf 10 x log-base-95 (6670903752021072936960)
abligh

Antworten:


26

Haskell, 107 Punkte

import Control.Monad
import Data.List

type Elem = Char
type Board = [[Elem]]
type Constraints = ([Elem],[Elem],[Elem])

digits :: [Elem]
digits = "123456789"
noCons :: Constraints
noCons = ([],[],[])
disjointCons :: Constraints
disjointCons = ("123","456","789") -- constraints from a single block - up to isomorphism
triples :: [a] -> [[a]]
triples [a,b,c,d,e,f,g,h,i] = [[a,b,c],[d,e,f],[g,h,i]]
(+++) :: Constraints -> Constraints -> Constraints
(a,b,c) +++ (d,e,f) = (a++d,b++e,c++f)

maxB = 12096 
-- length $ assignments noCons disjointCons
maxC = 216 -- worst case: rows can be assigned independently
maxD = maxB
maxE = 448
-- foldl1' max [length $ assignments disjointCons colCons
--             | (_, colCons) <- map constraints $ assignments ([],[1],[1]) ([],[1],[1]),
--               let ([a,d,g],[b,e,h],[c,f,i]) = colCons,
--               a < d, d < g, b < e, e < h, c < f, f < i]
maxF = 2 ^ 3 -- for each row the relevant column constraints can be in the same column (no assignment), 
             -- or in two or three columns (two assignments)
maxG = maxC
maxH = maxF

-- constraints -> list of block solutions
assignments :: Constraints -> Constraints -> [[Elem]]
assignments (r1,r2,r3) (c1,c2,c3) = do
    a <- digits  \\ (r1 ++ c1); let digits1 = digits  \\ [a]
    b <- digits1 \\ (r1 ++ c2); let digits2 = digits1 \\ [b]
    c <- digits2 \\ (r1 ++ c3); let digits3 = digits2 \\ [c]
    d <- digits3 \\ (r2 ++ c1); let digits4 = digits3 \\ [d]
    e <- digits4 \\ (r2 ++ c2); let digits5 = digits4 \\ [e]
    f <- digits5 \\ (r2 ++ c3); let digits6 = digits5 \\ [f]
    g <- digits6 \\ (r3 ++ c1); let digits7 = digits6 \\ [g]
    h <- digits7 \\ (r3 ++ c2); let digits8 = digits7 \\ [h]
    i <- digits8 \\ (r3 ++ c3)
    return [a,b,c,d,e,f,g,h,i]

-- block solution -> tuple of constraints
constraints :: [Elem] -> (Constraints, Constraints)
constraints [a,b,c,d,e,f,g,h,i] = (([a,b,c],[d,e,f],[g,h,i]),([a,d,g],[b,e,h],[c,f,i]))

------------------------------------------------------------------------------------------

-- solution -> Integer
solution2ix :: Board -> Integer
solution2ix [a,b,c,d,e,f,g,h,i] =
    let (ar, ac) = constraints a
        (br, bc) = constraints b
        (_ , cc) = constraints c
        (dr, dc) = constraints d
        (er, ec) = constraints e
        (_ , fc) = constraints f
        (gr, _ ) = constraints g
        (hr, _ ) = constraints h
        (_ , _ ) = constraints i

        Just ixA = findIndex (a ==) $ assignments noCons      noCons
        Just ixB = findIndex (b ==) $ assignments ar          noCons
        Just ixC = findIndex (c ==) $ assignments (ar +++ br) noCons
        Just ixD = findIndex (d ==) $ assignments noCons      ac
        Just ixE = findIndex (e ==) $ assignments dr          bc
        Just ixF = findIndex (f ==) $ assignments (dr +++ er) cc
        Just ixG = findIndex (g ==) $ assignments noCons      (ac +++ dc)
        Just ixH = findIndex (h ==) $ assignments gr          (bc +++ ec)
        Just ixI = findIndex (i ==) $ assignments (gr +++ hr) (cc +++ fc)

    in foldr (\(i,m) acc -> fromIntegral i + m * acc) (fromIntegral ixA)
     $ zip [ixH, ixG, ixF, ixE, ixD, ixC, ixB] [maxH, maxG, maxF, maxE, maxD, maxC, maxB]

--    list of rows 
-- -> list of threes of triples
-- -> three triples of threes of triples 
-- -> three threes of triples of triples
-- -> nine triples of triples
-- -> nine blocks
toBoard :: [[Elem]] -> Board
toBoard = map concat . concat . map transpose . triples . map triples

toBase95 :: Integer -> String
toBase95 0 = ""
toBase95 ix = toEnum (32 + fromInteger (ix `mod` 95)) : toBase95 (ix `div` 95)

------------------------------------------------------------------------------------------

ix2solution :: Integer -> Board
ix2solution ix =
    let (ixH', ixH) = ix   `divMod` maxH
        (ixG', ixG) = ixH' `divMod` maxG
        (ixF', ixF) = ixG' `divMod` maxF
        (ixE', ixE) = ixF' `divMod` maxE
        (ixD', ixD) = ixE' `divMod` maxD
        (ixC', ixC) = ixD' `divMod` maxC
        (ixA , ixB) = ixC' `divMod` maxB

        a = assignments noCons      noCons      !! fromIntegral ixA
        (ra, ca) = constraints a
        b = assignments ra          noCons      !! fromIntegral ixB
        (rb, cb) = constraints b
        c = assignments (ra +++ rb) noCons      !! fromIntegral ixC
        (_ , cc) = constraints c
        d = assignments noCons      ca          !! fromIntegral ixD
        (rd, cd) = constraints d
        e = assignments rd          cb          !! fromIntegral ixE
        (re, ce) = constraints e
        f = assignments (rd +++ re) cc          !! fromIntegral ixF
        (_ , cf) = constraints f
        g = assignments noCons      (ca +++ cd) !! fromIntegral ixG
        (rg, _ ) = constraints g
        h = assignments rg          (cb +++ ce) !! fromIntegral ixH
        (rh, _ ) = constraints h
        [i] = assignments (rg +++ rh) (cc +++ cf)
    in  [a,b,c,d,e,f,g,h,i]

--    nine blocks
-- -> nine triples of triples
-- -> three threes of triples of triples
-- -> three triples of threes of triples
-- -> list of threes of triples
-- -> list of rows
fromBoard :: Board -> [[Elem]]
fromBoard = map concat . concat . map transpose . triples . map triples

fromBase95 :: String -> Integer
fromBase95 ""     = 0
fromBase95 (x:xs) = (toInteger $ fromEnum x) - 32 + 95 * fromBase95 xs

------------------------------------------------------------------------------------------

main = do line <- getLine
          if length line <= 12
             then putStrLn $ unlines $ map (intersperse ' ') $ fromBoard $ ix2solution $ fromBase95 line
             else do nextLines <- replicateM 8 getLine
                     putStrLn $ toBase95 $ solution2ix $ toBoard $ map (map head.words) $ line:nextLines

Die Testfallergebnisse:

q`3T/v50 =3,
^0NK(F4(V6T(
d KTTB{pJc[
B]^v[omnBF-*
WZslDPbcOm7'
)
ukVl2x/[+6F
qzw>GjmPxzo%
KE:*GH@H>(m!
SeM=kA`'3(X*

Der Code ist nicht schön, aber es funktioniert. Die Grundlage des Algorithmus ist, dass die Aufzählung aller Lösungen zu lange dauern würde, die Aufzählung aller Lösungen innerhalb eines einzelnen Blocks jedoch relativ schnell vonstatten geht - und zwar schneller als die anschließende Konvertierung nach base95. Das Ganze läuft innerhalb von Sekunden im Interpreter auf meinem Low-End-Rechner. Ein kompiliertes Programm würde sofort beendet.

Das schwere Heben wird durch die solution2ixFunktion ausgeführt, die für jeden 3 × 3-Block alle möglichen Permutationen erzeugt, wobei Einschränkungen von links und von oben gelten, bis sie diejenige in der codierten Lösung findet, die nur den Index dieser Permutation speichert. Anschließend werden die Indizes unter Verwendung einiger vorberechneter Gewichte und des Horner-Schemas kombiniert.

In der anderen Richtung ix2solutionzerlegt die Funktion den Index zunächst in neun Werte. Dann indiziert es für jeden Block die Liste möglicher Permutationen mit seinem jeweiligen Wert und extrahiert dann die Einschränkungen für die nächsten Blöcke.

assignmentsist eine einfache, aber hässliche unrollierte Rekursion mit der Listenmonade. Es wird eine Liste von Permutationen mit einer Reihe von Einschränkungen erstellt.

Die wahre Kraft ergibt sich aus den engen Grenzen der Permutationslistenlängen:

  • Die linke obere Ecke ist nicht eingeschränkt. Die Anzahl der Permutationen ist einfach 9!. Dieser Wert wird nur verwendet, um eine Obergrenze für die Ausgabelänge zu ermitteln.
  • Die Blöcke daneben haben nur eine Reihe von Einschränkungen - von oben links. Eine naive Obergrenze 6*5*4*6!ist siebenmal schlechter als die tatsächliche Anzahl, die durch Aufzählung ermittelt wurde:12096
  • Die obere rechte Ecke ist von links zweimal eingeschränkt. Jede Zeile kann nur sechs Permutationen haben, und im schlimmsten Fall (tatsächlich in jedem gültigen Fall) ist die Zuweisung unabhängig. Ähnliches gilt für die linke untere Ecke.
  • Das Mittelstück war am schwierigsten einzuschätzen. Erneut gewinnt die Brute Force - Zählen Sie die Permutation für jeden möglichen Satz von Einschränkungen bis zur Isomorphie. Dauert eine Weile, wird aber nur einmal benötigt.
  • Das rechte Mittelstück hat eine doppelte Beschränkung von links, die jede Reihe auf eine Permutation zwingt, aber auch eine einzelne Beschränkung von oben, die sicherstellt, dass nur zwei Permutationen pro Reihe möglich sind. Ähnliches gilt für das untere Mittelstück.
  • Die rechte untere Ecke wird vollständig von den Nachbarn bestimmt. Die alleinige Permutation wird bei der Indexberechnung nie überprüft. Eine Evaluierung zu erzwingen wäre einfach, es ist einfach nicht notwendig.

Das Produkt all dieser Grenzwerte ist 71025136897117189570560~ = 95^11.5544, was bedeutet, dass kein Code länger als 12 Zeichen ist und fast die Hälfte davon 11 Zeichen oder weniger enthalten sollte. Ich habe beschlossen, nicht zwischen einer kürzeren Zeichenfolge und derselben mit Leerzeichen rechts aufgefüllten Zeichenfolge zu unterscheiden. Leerzeichen an anderen Stellen sind von Bedeutung.

Die theoretische Grenze der Codierungseffizienz für präfixfreie Codes - Basis-95-Logarithmus von 6670903752021072936960- 11.035bedeutet, dass selbst ein optimaler Algorithmus die Erzeugung von Längen-12-Ausgaben nicht vermeiden kann, obwohl sie in nur 3,5% aller Fälle erzeugt werden. Wenn Sie zulassen, dass die Länge signifikant ist (oder entsprechend nachgestellte Leerzeichen), werden zwar einige Codes hinzugefügt (1% der Gesamtmenge), dies reicht jedoch nicht aus, um die Notwendigkeit von Länge-12-Codes zu beseitigen.


Denken Sie, dass das Arbeiten mit Blöcken effizienter ist als mit Zeilen?
XNOR

@ xnor es ist definitiv einfacher, die Einschränkungen auf diese Weise zu überprüfen
John Dvorak

... und um die Anzahl der Permutationen zu begrenzen, was hier noch wichtiger ist
John Dvorak,

@xnor, je größer die Blöcke sind, desto besser ist die Annäherung an die Optimalität. Mit den ersten drei Blöcken in einem Durchgang fertig zu werden, dann mit den nächsten drei Blöcken in einem Durchgang und schließlich mit den unteren Blöcken, ist wahrscheinlich der nächste logische Schritt zur Verbesserung der Punktzahl.
Peter Taylor

@ PeterTaylor 9! ^ 3 = 4,8e16. Das ist etwas zu hoch, aber die erste Reihe numerisch zu behandeln, dann die nächsten zwei, die nächsten drei und schließlich die letzte aufzuzählen, könnte machbar sein. Ich könnte das ausprobieren.
John Dvorak

10

Python, 130 Punkte

j1:4}*KYm6?D
h^('gni9X`g'#
$2{]8=6^l=fF!
BS ;1;J:z"^a"
\/)gT)sixb"A+
WI?TFvj%:&3-\$
*iecz`L2|a`X0
eLbt<tf|mFN'&
;KH_TzK$erFa!
7T=1*6$]*"s"!

Der Algorithmus codiert nacheinander jede Position auf der Platine in eine große Ganzzahl. Für jede Position berechnet es die möglichen Werte bei allen bisher codierten Zuordnungen. Wenn also [1,3,7,9] die möglichen Werte für eine bestimmte Position sind, werden 2 Bits benötigt, um die Auswahl zu codieren.

Das Schöne an diesem Schema ist, dass eine Position, die nur noch eine einzige Auswahlmöglichkeit hat, keinen Platz zum Codieren benötigt.

Sobald wir die große ganze Zahl haben, schreiben wir sie in Basis 95 aus.

Es gibt wahrscheinlich bessere Kodierungsreihenfolgen als lexikografische, aber ich habe nicht viel darüber nachgedacht.

Encoder:

import sys

sets = [range(i*9, i*9+9) for i in xrange(9)]
sets += [range(i, 81, 9) for i in xrange(9)]
sets += [[i/3*27+i%3*3+j/3*9+j%3 for j in xrange(9)] for i in xrange(9)]

M = []
for line in sys.stdin.readlines():
    M += [int(x) for x in line.split()]

A = 0
m = 1
for i in xrange(81):
    allowed = set(xrange(1,10))
    for s in sets:
        if i in s:
            for j in s:
                if j < i: allowed.discard(M[j])
    allowed = sorted(allowed)
    A += m * allowed.index(M[i])
    m *= len(allowed)

s=''
while A != 0:
    s+='%c'%(32+A%95)
    A /= 95
print s

Decoder:

sets = [range(i*9, i*9+9) for i in xrange(9)]
sets += [range(i, 81, 9) for i in xrange(9)]
sets += [[i/3*27+i%3*3+j/3*9+j%3 for j in xrange(9)] for i in xrange(9)]

s=raw_input()
A=0
m=1
while s != '':
    A += m * (ord(s[0])-32)
    s = s[1:]
    m *= 95

M=[]
for i in xrange(81):
    allowed = set(xrange(1,10))
    for s in sets:
        if i in s:
            for j in s:
                if j < i: allowed.discard(M[j])
    allowed = sorted(allowed)
    M += [allowed[A%len(allowed)]]
    A /= len(allowed)

for i in xrange(9):
    print ' '.join(str(x) for x in M[i*9:i*9+9])

Führen Sie es so aus:

> cat sudoku1 | ./sudokuEnc.py | ./sudokuDec.py
9 7 3 5 8 1 4 2 6
5 2 6 4 7 3 1 9 8
1 8 4 2 9 6 7 5 3
2 4 7 8 6 5 3 1 9
3 9 8 1 2 4 6 7 5
6 5 1 7 3 9 8 4 2
8 1 9 3 4 2 5 6 7
7 6 5 9 1 8 2 3 4
4 3 2 6 5 7 9 8 1

Was sind die Testfallausgaben? Nur neugierig. Die Punktzahl ist beeindruckend, wenn man bedenkt, wie kurz der Code im Vergleich zu meinem ist.
John Dvorak

@ JanDvorak: Ich habe die codierten Boards hinzugefügt.
Keith Randall

7

perl - score 115 113 103 113

Ausgabe:

"#1!A_mb_jB)
FEIV1JH~vn"
$\\XRU*LXea.
EBIC5fPxklB
5>jM7(+0MrM
!'Wu9FS2d~!W
":`R60C"}z!k
:B&Jg[fL%\j
"L28Y?3`Q>4w
o0xPz8)_i%-

Ausgabe:

                  # note this line is empty
S}_h|bt:za        
%.j0.6w>?RM+
:H$>a>Cy{7C
'57UHjcWQmcw
owmK0NF?!Fv
# }aYExcZlpD
nGl^K]xH(.\
9ii]I$voC,x
!:MR0>I>PuTU

Keine dieser Zeilen hat ein Abschlusszeichen. Beachten Sie, dass die erste Zeile leer ist.

Dieser Algorithmus funktioniert wie folgt. Komprimieren:

  1. Beginnen Sie mit einer leeren 'aktuellen' Zeichenfolge, die das Sudoku-Gitter darstellt

  2. Erwägen Sie, der Reihe nach die Ziffern 1 bis 9 zu dieser Zeichenfolge hinzuzufügen und festzustellen, welche davon sinnvoll ist.

  3. Holen Sie sich die nächste Ziffer aus dem Antwortraster (und fügen Sie es dem aktuellen hinzu)

  4. Wenn nur einer lebensfähig ist, gibt es nichts zu codieren

  5. Wenn mehr als eine Option möglich ist, zählen Sie die Anzahl der möglichen Optionen, sortieren Sie sie und codieren Sie diese Ziffer als Index in das sortierte Array. Notieren Sie die Ziffer und die Zahl als 2-Tupel in einem Array.

  6. Wenn alles erledigt ist, codieren Sie jedes der 2 Tupel (in umgekehrter Reihenfolge) in einer variablen Zahl, die als Bigint gespeichert ist.

  7. Drücken Sie den Bigint in Basis 95 aus.

Dekodieren:

  1. Beginnen Sie mit einer leeren 'aktuellen' Zeichenfolge, die das Sudoku-Gitter darstellt

  2. Dekodiere die Base95-Zahl zu einer Bigint

  3. Erwägen Sie, der Reihe nach die Ziffern 1 bis 9 zu dieser Zeichenfolge hinzuzufügen und festzustellen, welche davon sinnvoll ist.

  4. Wenn nur einer lebensfähig ist, gibt es nichts zu codieren; füge diese Auswahl dem Gitter hinzu

  5. Wenn mehr als eine Option möglich ist, zählen Sie die Anzahl der möglichen Optionen, sortieren Sie sie und codieren Sie diese Ziffer als Index in das sortierte Array.

  6. Dekodieren Sie die Variable-Base-Bigint unter Verwendung der Anzahl der realisierbaren Optionen als Basis und des Moduls als Index in das Array und geben Sie diese Ziffer als Zellenwert aus.

Um die Anzahl der realisierbaren Optionen zu bestimmen, wird Games :: Sudoku :: Solver verwendet. Dies dient hauptsächlich der Übersichtlichkeit, da sich auf dieser Website 3-Zeilen-Sudoku-Löser befinden.

Um alle 10 zu erledigen, brauchte ich 8 Sekunden auf meinem Laptop.

Die fudgeOperation sortiert das Array unterschiedlich, um den Minimalwert für die Testfälle zu erreichen. Wie dokumentiert, ist dies ein Fudge. Das Fudge reduziert die Punktzahl von 115 auf 103. Es ist handgemacht, um sicherzustellen, dass der Bigint-Code für den ersten Test 0 ist. Die schlechteste Punktzahl für ein Sudoku ist 12, was eine Punktzahl von 120 ergibt. Ich denke also, dass dies nicht zählt als Hardcodierung; Vielmehr optimiert es für die Testdaten. Um zu sehen, wie es ohne dies funktioniert, wechseln Sie sort fudgezusort in beiden Orten.

Code folgt:

#!/usr/bin/perl

use strict;
use warnings;
use Getopt::Long;
use bigint;
use Games::Sudoku::Solver qw (:Minimal set_solution_max count_occupied_cells);

# NOTE THIS IS NOT USED BY DEFAULT - see below and discussion in comments
my @fudgefactor = qw (9 7 3 5 8 1 4 2 6 5 2 6 4 7 3 1 9 8 1 8 4 2 9 6 7 5 3 2 4 7 8 6 5 3 1 9 3 9 8 1 2 4 6 7 5 6 5 1 7 3 9 8 4 2 8 1 9 3 4 2 5 6 7 7 6 5 9 1 8 2 3 4 4 3 2 6 5 7 9 8 1);
my $fudgeindex=0;
my $fudging=0; # Change to 1 to decrease score by 10

sub isviable
{
    no bigint;
    my $current = shift @_;
    my @test = map {$_ + 0} split(//, substr(($current).("0"x81), 0, 81));
    my @sudoku;
    my @solution;
    set_solution_max (2);
    my $nsolutions;

    eval
    {
        sudoku_set(\@sudoku, \@test);
        $nsolutions = sudoku_solve(\@sudoku, \@solution);
    };
    return 0 unless $nsolutions;
    return ($nsolutions >=1);
}

sub getnextviable
{
    my $current = shift @_; # grid we have so far
    my %viable;

    for (my $i = 1; $i<=9; $i++)
    {
        my $n;
        my $solution;
        $viable{$i} = 1 if (isviable($current.$i));
    }
    return %viable;
}

sub fudge
{
    return $a<=>$b unless ($fudging);
    my $k=$fudgefactor[$fudgeindex];
    my $aa = ($a+10-$k) % 10;
    my $bb = ($b+10-$k) % 10;
    return $aa<=>$bb;
}


sub compress
{
    my @data;
    while (<>)
    {
        chomp;
        foreach my $d (split(/\s+/))
        {
            push @data, $d;
        }
    }

    my $code = 0;
    my $current = "";
    my @codepoints;
    foreach my $d (@data)
    {
        my %viable = getnextviable($current);
        die "Digit $d is unexpectedly not viable - is sudoku impossible?" unless ($viable{$d});

        my $nviable = scalar keys(%viable);
        if ($nviable>1)
        {
            my $n=0;
            foreach my $k (sort fudge keys %viable)
            {
                if ($k==$d)
                {
                    no bigint;
                    my %cp = ( "n"=> $n, "v"=> $nviable);
                    unshift @codepoints, \%cp;
                    last;
                }
                $n++;
            }
        }
        $fudgeindex++;
        $current .= $d;
    }

    foreach my $cp (@codepoints)
    {
        $code = ($code * $cp->{"v"})+$cp->{"n"};
    }

    # print in base 95
    my $out="";
    while ($code)
    {
        my $digit = $code % 95;
        $out = chr($digit+32).$out;
        $code -= $digit;
        $code /= 95;
    }

    print "$out";
}

sub decompress
{
    my $code = 0;

    # Read from base 95 into bigint
    while (<>)
    {
        chomp;
        foreach my $char (split (//, $_))
        {
            my $c =ord($char)-32;
            $code*=95;
            $code+=$c;
        }
    }

    # Reconstruct sudoku
    my $current = "";
    for (my $cell = 0; $cell <81; $cell++)
    {
        my %viable = getnextviable($current);
        my $nviable = scalar keys(%viable);
        die "Cell $cell is unexpectedly not viable - is sudoku impossible?" unless ($nviable);

        my $mod = $code % $nviable;
        $code -= $mod;
        $code /= $nviable;

        my @v = sort fudge keys (%viable);
        my $d = $v[$mod];
        $current .= $d;
        print $d.(($cell %9 != 8)?" ":"\n");
        $fudgeindex++;
    }
}

my $decompress;
GetOptions ("d|decompress" => \$decompress);


if ($decompress)
{
    decompress;
}
else
{
    compress;
}

5
"Ich denke daher nicht, dass dies als Hardcodierung gilt" ist eine ziemlich kühne Aussage, wenn man bedenkt, dass einer der Testfälle wörtlich in Ihrem Code enthalten ist.
Aaron Dufour

@AaronDufour Sie haben die folgenden Wörter verpasst: "aber es optimiert für die Testdaten". Siehe auch die Diskussion unter der Frage; Im Wesentlichen, wenn Sie optimieren, können Sie 0 bis 12 von 120 Symbolen löschen. Glücklicherweise ergibt die nicht optimierte Lösung 115; Ein zufälliger konstanter Moduloffset ergibt 113. Aufgrund der Art und Weise, wie die Herausforderung bewertet wird, können Sie nachweislich bis zu 12 subtrahieren. Ich bin mir ziemlich sicher, dass diese Methode immer noch die niedrigste durchschnittliche Lösungsgröße für eine zufällige Eingabemenge liefert (wenn Sie darüber nachdenken, muss sie oder muss sie ziemlich nahe sein) Kodierung.
abligh

1
Einem perfekten Codierer (dh einem, der die Fälle 6670903752021072936960 auflistet) kann leicht eine harte Codierung aller zehn Testfälle hinzugefügt werden, was zu einer Punktzahl von 9 führt. Addieren Sie einfach 10 zu der großen ganzen Zahl und ersetzen Sie sie durch 0..9 für die besonderen Fälle. 0-Codes als leere Zeichenfolge und der Restcode als ein Zeichen, daher eine Punktzahl von 9. Die Auswirkung auf die durchschnittliche Anzahl der Zeichen pro Board ist ein Anstieg von 3,3 x 10 ^ -22, der nicht nachweisbar ist.
Mark Adler

... weshalb hier die Wertung gebrochen ist. Ich schlug eine Alternative vor.
abligh

-1 für die Fudging - auch wenn es nur um ein Problem mit der Wertung zu demonstrieren ist ...
John Dvorak

6

CJam, 309 Bytes

Dies ist nur eine schnelle Basislösung. Es tut mir leid, dass ich dies in einer Golfsprache getan habe, aber es war tatsächlich der einfachste Weg, dies zu tun. Ich werde morgen eine Erklärung des tatsächlichen Codes hinzufügen, aber ich habe den Algorithmus unten umrissen.

Encoder

q~{);}%);:+:(9b95b32f+:c

Decoder

l:i32f-95b9bW%[0]64*+64<W%:)8/{_:+45\-+}%z{_:+45\-+}%z`

Teste es hier.

Der Eingang des Codierers (bei STDIN) und der Ausgang des Decodierers (bei STDOUT) haben die Form eines verschachtelten CJam-Arrays. Z.B

[[8 3 5 4 1 6 9 2 7] [2 9 6 8 5 7 4 3 1] [4 1 7 2 9 3 6 5 8] [5 6 9 1 3 4 7 8 2] [1 2 3 6 7 8 5 4 9] [7 4 8 5 2 9 1 6 3] [6 5 2 7 8 1 3 9 4] [9 8 1 3 4 5 2 7 6] [3 7 4 9 6 2 8 1 5]]

Die 10 Testausgänge sind:

U(5wtqmC.-[TM.#aMY#k*)pErHQcg'{
EWrn"^@p+g<5XT5G[r1|bk?q6Nx4~r?
#489pLj5+ML+z@y$]8a@CI,K}B$$Mwn
LF_X^"-h**A!'VZq kHT@F:"ZMD?A0r
?gD;"tw<yG%8y!3S"BC:ojQ!#;i-:\g
qS#"L%`4yei?Ce_r`{@EOl66m^hx77
"EF?` %!H@YX6J0F93->%90O7T#C_5u
9V)R+6@Jx(jg@@U6.DrMO*5G'P<OHv8
(Ua6z{V:hX#sV@g0s<|!X[T,Jy|oQ+K
N,F8F1!@OH1%%zs%dI`Q\q,~oAEl(:O

Der Algorithmus ist sehr einfach:

  • Entfernen Sie die letzte Spalte und Zeile.
  • Behandle die verbleibenden 64 Ziffern als Zahl zur Basis 9 (nachdem jede Ziffer um 1 dekrementiert wurde).
  • Wandle das in Base-95 um, addiere 32 zu jeder Ziffer und mache daraus das entsprechende ASCII-Zeichen.
  • Kehren Sie für die Dekodierung die Basisumwandlung um und füllen Sie die letzte Spalte und Zeile mit den fehlenden Zahlen.

Ich habe die 10 Testfälle hinzugefügt. Punktzahl ist die Summe der Anzahl der Zeichen in allen 10 jetzt.
kukac67

@ kukac67 Ja, schon behoben.
Martin Ender

Es tut mir leid, ich habe anscheinend den achten Testfall geändert, kurz nachdem Sie ihn ausgeführt haben. Ich war nicht schnell genug. : D
kukac67

Beim Dekodieren des 7. Testfalls ist mir aufgefallen, dass es nicht funktioniert hat. Ich denke du hast einen Bug. "[[4 5 7 9 2 8 3 3 4] ..."
kukac67

@ kukac67 Sollte behoben sein. Ich habe vergessen, das 64-stellige Ergebnis mit führenden Nullen aufzufüllen.
Martin Ender

6

Python 2.7, 107 Zeichen insgesamt

TL; DR Brute-Force-Aufzählung von 3x3-Quadraten mit Einschränkungen von oben + links

Testfälle:

import itertools

inputs = """
9 7 3 5 8 1 4 2 6
5 2 6 4 7 3 1 9 8
1 8 4 2 9 6 7 5 3
2 4 7 8 6 5 3 1 9
3 9 8 1 2 4 6 7 5
6 5 1 7 3 9 8 4 2
8 1 9 3 4 2 5 6 7
7 6 5 9 1 8 2 3 4
4 3 2 6 5 7 9 8 1

7 2 4 8 6 5 1 9 3
1 6 9 2 4 3 8 7 5
3 8 5 1 9 7 2 4 6
8 9 6 7 2 4 3 5 1
2 7 3 9 5 1 6 8 4
4 5 1 3 8 6 9 2 7
5 4 2 6 3 9 7 1 8
6 1 8 5 7 2 4 3 9
9 3 7 4 1 8 5 6 2

1 5 7 6 8 2 3 4 9
4 3 2 5 1 9 6 8 7
6 9 8 3 4 7 2 5 1
8 2 5 4 7 6 1 9 3
7 1 3 9 2 8 4 6 5
9 6 4 1 3 5 7 2 8
5 4 1 2 9 3 8 7 6
2 8 9 7 6 1 5 3 4
3 7 6 8 5 4 9 1 2

8 3 5 4 1 6 9 2 7
2 9 6 8 5 7 4 3 1
4 1 7 2 9 3 6 5 8
5 6 9 1 3 4 7 8 2
1 2 3 6 7 8 5 4 9
7 4 8 5 2 9 1 6 3
6 5 2 7 8 1 3 9 4
9 8 1 3 4 5 2 7 6
3 7 4 9 6 2 8 1 5

6 2 8 4 5 1 7 9 3
5 9 4 7 3 2 6 8 1
7 1 3 6 8 9 5 4 2
2 4 7 3 1 5 8 6 9
9 6 1 8 2 7 3 5 4
3 8 5 9 6 4 2 1 7
1 5 6 2 4 3 9 7 8
4 3 9 5 7 8 1 2 6
8 7 2 1 9 6 4 3 5

1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6
2 1 4 3 6 5 8 9 7
3 6 5 8 9 7 2 1 4
8 9 7 2 1 4 3 6 5
5 3 1 6 4 8 9 7 2
6 4 8 9 7 2 5 3 1
9 7 2 5 3 1 6 4 8

1 4 5 7 9 2 8 3 6
3 7 6 5 8 4 1 9 2
2 9 8 3 6 1 7 5 4
7 3 1 9 2 8 6 4 5
8 5 9 6 4 7 3 2 1
4 6 2 1 3 5 9 8 7
6 2 4 8 7 3 5 1 9
5 8 7 4 1 9 2 6 3
9 1 3 2 5 6 4 7 8

5 2 7 4 1 6 9 3 8
8 6 4 3 2 9 1 5 7
1 3 9 5 7 8 6 4 2
2 9 1 8 5 4 3 7 6
3 4 8 6 9 7 5 2 1
6 7 5 1 3 2 4 8 9
7 1 2 9 4 5 8 6 3
4 8 3 2 6 1 7 9 5
9 5 6 7 8 3 2 1 4

2 4 6 7 1 3 9 8 5
1 8 5 4 9 6 7 3 2
9 3 7 8 2 5 1 4 6
6 7 8 5 4 2 3 9 1
4 9 3 1 6 8 2 5 7
5 1 2 3 7 9 4 6 8
8 2 4 9 5 7 6 1 3
7 5 9 6 3 1 8 2 4
3 6 1 2 8 4 5 7 9

8 6 1 2 9 4 5 7 3
4 7 5 3 1 8 6 9 2
3 9 2 5 6 7 8 1 4
2 3 6 4 5 9 7 8 1
1 5 4 7 8 3 2 6 9
9 8 7 6 2 1 3 4 5
5 2 9 1 7 6 4 3 8
6 4 8 9 3 2 1 5 7
7 1 3 8 4 5 9 2 6
""".strip().split('\n\n')

Hilfsfunktion zum Drucken von Sudoku

def print_sudoku(m):
    for k in m:
        print' '.join(str(i) for i in k)

generiert alle möglichen Quadrate mit den oben und links angegebenen Bedingungen

Weitere Einzelheiten finden Sie im Codekommentar

def potential_squares(u1, u2, u3, l1, l2, l3):
    """
    returns generator of possible squares given lists of digits above and below

           u1 u2 u3
           |  |  |
    l1 --  a  b  c
    l2 --  d  e  f
    l3 --  g  h  i

    if no items exist the empty list must be given
    """
    for a, b, c, d, e, f, g, h, i in itertools.permutations(xrange(1, 10)):
        if a not in u1 and a not in l1 and b not in u2 and b not in l1 and c not in u3 and c not in l1 and d not in u1 and d not in l2 and e not in u2 and e not in l2 and f not in u3 and f not in l2 and g not in u1 and g not in l3 and h not in u2 and h not in l3 and i not in u3 and i not in l3:
            yield (a, b, c, d, e, f, g, h, i)

Extrahiert alle Quadrate aus dem Sudoku-Board als Tupel

Weitere Einzelheiten finden Sie im Codekommentar

def board_to_squares(board):
    """
    finds 9 squares in a 9x9 board in this order:
    1 1 1 2 2 2 3 3 3
    1 1 1 2 2 2 3 3 3
    1 1 1 2 2 2 3 3 3
    4 4 4 5 5 5 6 6 6
    4 4 4 5 5 5 6 6 6
    4 4 4 5 5 5 6 6 6
    7 7 7 8 8 8 9 9 9
    7 7 7 8 8 8 9 9 9
    7 7 7 8 8 8 9 9 9

    returns tuple for each square as follows:
    a b c
    d e f   -->  (a,b,c,d,e,f,g,h,i)
    g h i
    """
    labels = [[3 * i + 1] * 3 + [3 * i + 2] * 3 + [3 * i + 3] * 3 for i in [0, 0, 0, 1, 1, 1, 2, 2, 2]]
    labelled_board = zip(sum(board, []), sum(labels, []))
    return [tuple(a for a, b in labelled_board if b == sq) for sq in xrange(1, 10)]

wandelt Quadrate wieder in Sudoku um

im Grunde eine Umkehrung der obigen Funktion

def squares_to_board(squares):
    """
    inverse of above
    """
    board = [[i / 3 * 27 + i % 3 * 3 + j / 3 * 9 + j % 3 for j in range(9)] for i in range(9)]
    flattened = sum([list(square) for square in squares], [])
    for i in range(9):
        for j in range(9):
            board[i][j] = flattened[board[i][j]]
    return board

gegebene Quadrate links, Rückgabebedingungen

Weitere Einzelheiten finden Sie im Codekommentar

def sum_rows(*squares):
    """
    takes tuples for squares and returns lists corresponding to the rows:
    l1 -- a b c   j k l
    l2 -- d e f   m n o  ...
    l3 -- g h i   p q r
    """
    l1 = []
    l2 = []
    l3 = []
    if len(squares):
        for a, b, c, d, e, f, g, h, i in squares:
            l1 += [a, b, c]
            l2 += [d, e, f]
            l3 += [g, h, i]
        return l1, l2, l3
    return [], [], []

gegebene Quadrate oben, Rückgabeeinschränkungen

Weitere Einzelheiten finden Sie im Codekommentar

def sum_cols(*squares):
    """
    takes tuples for squares and returns lists corresponding to the cols:

    u1 u2 u3
    |  |  |
    a  b  c
    d  e  f
    g  h  i

    j  k  l
    m  n  o
    p  q  r

      ...

    """
    u1 = []
    u2 = []
    u3 = []
    if len(squares):
        for a, b, c, d, e, f, g, h, i in squares:
            u1 += [a, d, g]
            u2 += [b, e, h]
            u3 += [c, f, i]
        return u1, u2, u3
    return [], [], []

macht eine Zeichenfolge

def base95(A):
    if type(A) is int or type(A) is long:
        s = ''
        while A > 0:
            s += chr(32 + A % 95)
            A /= 95
        return s
    if type(A) is str:
        return sum((ord(c) - 32) * (95 ** i) for i, c in enumerate(A))

Dies ist eine hartcodierte Liste von Abhängigkeiten für jedes Quadrat

Weitere Einzelheiten finden Sie im Codekommentar

"""
dependencies: every square as labeled
1 2 3
4 5 6
7 8 9
is dependent on those above and to the left

in a dictionary, it is:
square: ([above],[left])
"""
dependencies = {1: ([], []), 2: ([], [1]), 3: ([], [1, 2]), 4: ([1], []), 5: ([2], [4]), 6: ([3], [4, 5]),
                7: ([1, 4], []), 8: ([2, 5], [7]), 9: ([3, 6], [7, 8])}

Dies ist eine hartcodierte Liste der maximal möglichen Optionen für jedes Quadrat

Weitere Einzelheiten finden Sie im Codekommentar

"""
max possible options for a given element

  9 8 7   ? ? ?   3 2 1
  6 5 4  (12096)  3 2 1
  3 2 1   ? ? ?   3 2 1

  ? ? ?   ? ? ?   2 2 1
 (12096)  (420)   2 1 1    (limits for squares 2,4 determined experimentally)
  ? ? ?   ? ? ?   1 1 1    (limit for square 5 is a pessimistic guess, might be wrong)

  3 3 3   2 2 1   1 1 1
  2 2 2   2 1 1   1 1 1
  1 1 1   1 1 1   1 1 1
"""
possibilities = [362880, 12096, 216, 12096, 420, 8, 216, 8, 1]

Diese kombinieren die obigen Funktionen und konvertieren eine Karte in eine Liste von ganzen Zahlen

def factorize_sudoku(board):
    squares = board_to_squares(board)
    factors = []

    for label in xrange(1, 10):
        above, left = dependencies[label]
        u1, u2, u3 = sum_cols(*[sq for i, sq in enumerate(squares) if i + 1 in above])
        l1, l2, l3 = sum_rows(*[sq for i, sq in enumerate(squares) if i + 1 in left])
        for i, k in enumerate(potential_squares(u1, u2, u3, l1, l2, l3)):
            if k == squares[label - 1]:
                factors.append(i)
                continue
    return factors

und zurück zu einem Brett

def unfactorize_sudoku(factors):
    squares = []
    for label in xrange(1, 10):
        factor = factors[label - 1]
        above, left = dependencies[label]
        u1, u2, u3 = sum_cols(*[sq for i, sq in enumerate(squares) if i + 1 in above])
        l1, l2, l3 = sum_rows(*[sq for i, sq in enumerate(squares) if i + 1 in left])
        for i, k in enumerate(potential_squares(u1, u2, u3, l1, l2, l3)):
            if i == factor:
                squares.append(k)
                continue
    return squares

Okay, das sind alle Funktionen

Für jede Tafel einen String machen und ausdrucken

strings = []
for sudoku in inputs:
    board = [[int(x) for x in line.split()] for line in sudoku.strip().split('\n')]
    print_sudoku(board)
    factors = factorize_sudoku(board)

    i = 0
    for item, modulus in zip(factors, possibilities):
        i *= modulus
        i += item

    strings.append(base95(i))
    print 'integral representation:', i
    print 'bits of entropy:', i.bit_length()
    print 'base95 representation:', strings[-1]
    print ''

Jetzt drucken Sie die Gesamtlänge aller Zeichenfolgen

print 'overall output:', strings
print 'total length:', len(''.join(strings))
print ''

und aufheben, um zu beweisen, dass es sich nicht um eine Einwegkomprimierung handelt

for string in strings:
    print 'from:', string

    i = base95(string)
    retrieved = []
    for base in possibilities[::-1]:
        retrieved.append(i % base)
        i /= base

    squares = unfactorize_sudoku(retrieved[::-1])
    print_sudoku(squares_to_board(squares))
    print ''

Ausgabe:

9 7 3 5 8 1 4 2 6
5 2 6 4 7 3 1 9 8
1 8 4 2 9 6 7 5 3
2 4 7 8 6 5 3 1 9
3 9 8 1 2 4 6 7 5
6 5 1 7 3 9 8 4 2
8 1 9 3 4 2 5 6 7
7 6 5 9 1 8 2 3 4
4 3 2 6 5 7 9 8 1
integral representation: 65073646522550110083448
bits of entropy: 76
base95 representation: 23f!dvoR[pI+

7 2 4 8 6 5 1 9 3
1 6 9 2 4 3 8 7 5
3 8 5 1 9 7 2 4 6
8 9 6 7 2 4 3 5 1
2 7 3 9 5 1 6 8 4
4 5 1 3 8 6 9 2 7
5 4 2 6 3 9 7 1 8
6 1 8 5 7 2 4 3 9
9 3 7 4 1 8 5 6 2
integral representation: 45592184788002754998731
bits of entropy: 76
base95 representation: +gel3sJ?vL!(

1 5 7 6 8 2 3 4 9
4 3 2 5 1 9 6 8 7
6 9 8 3 4 7 2 5 1
8 2 5 4 7 6 1 9 3
7 1 3 9 2 8 4 6 5
9 6 4 1 3 5 7 2 8
5 4 1 2 9 3 8 7 6
2 8 9 7 6 1 5 3 4
3 7 6 8 5 4 9 1 2
integral representation: 3351617758498333760666
bits of entropy: 72
base95 representation: !"=W3R"`w|W

8 3 5 4 1 6 9 2 7
2 9 6 8 5 7 4 3 1
4 1 7 2 9 3 6 5 8
5 6 9 1 3 4 7 8 2
1 2 3 6 7 8 5 4 9
7 4 8 5 2 9 1 6 3
6 5 2 7 8 1 3 9 4
9 8 1 3 4 5 2 7 6
3 7 4 9 6 2 8 1 5
integral representation: 54077388556332388193975
bits of entropy: 76
base95 representation: zAu5Rvno.2P)

6 2 8 4 5 1 7 9 3
5 9 4 7 3 2 6 8 1
7 1 3 6 8 9 5 4 2
2 4 7 3 1 5 8 6 9
9 6 1 8 2 7 3 5 4
3 8 5 9 6 4 2 1 7
1 5 6 2 4 3 9 7 8
4 3 9 5 7 8 1 2 6
8 7 2 1 9 6 4 3 5
integral representation: 38664325462033435490761
bits of entropy: 76
base95 representation: ?8KJHGXS^hk&

1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6
2 1 4 3 6 5 8 9 7
3 6 5 8 9 7 2 1 4
8 9 7 2 1 4 3 6 5
5 3 1 6 4 8 9 7 2
6 4 8 9 7 2 5 3 1
9 7 2 5 3 1 6 4 8
integral representation: 9
bits of entropy: 4
base95 representation: )

1 4 5 7 9 2 8 3 6
3 7 6 5 8 4 1 9 2
2 9 8 3 6 1 7 5 4
7 3 1 9 2 8 6 4 5
8 5 9 6 4 7 3 2 1
4 6 2 1 3 5 9 8 7
6 2 4 8 7 3 5 1 9
5 8 7 4 1 9 2 6 3
9 1 3 2 5 6 4 7 8
integral representation: 2146071528999475941021
bits of entropy: 71
base95 representation: ]ib2[x.u*pC

5 2 7 4 1 6 9 3 8
8 6 4 3 2 9 1 5 7
1 3 9 5 7 8 6 4 2
2 9 1 8 5 4 3 7 6
3 4 8 6 9 7 5 2 1
6 7 5 1 3 2 4 8 9
7 1 2 9 4 5 8 6 3
4 8 3 2 6 1 7 9 5
9 5 6 7 8 3 2 1 4
integral representation: 31150627593616723824594
bits of entropy: 75
base95 representation: BFK1'H9}r9M%

2 4 6 7 1 3 9 8 5
1 8 5 4 9 6 7 3 2
9 3 7 8 2 5 1 4 6
6 7 8 5 4 2 3 9 1
4 9 3 1 6 8 2 5 7
5 1 2 3 7 9 4 6 8
8 2 4 9 5 7 6 1 3
7 5 9 6 3 1 8 2 4
3 6 1 2 8 4 5 7 9
integral representation: 9659549243898865961967
bits of entropy: 74
base95 representation: ;EOSPiy9T?b!

8 6 1 2 9 4 5 7 3
4 7 5 3 1 8 6 9 2
3 9 2 5 6 7 8 1 4
2 3 6 4 5 9 7 8 1
1 5 4 7 8 3 2 6 9
9 8 7 6 2 1 3 4 5
5 2 9 1 7 6 4 3 8
6 4 8 9 3 2 1 5 7
7 1 3 8 4 5 9 2 6
integral representation: 56473223126891371769434
bits of entropy: 76
base95 representation: 3TLSl3hPU3x)

overall output: ['23f!dvoR[pI+', '+gel3sJ?vL!(', '!"=W3R"`w|W', 'zAu5Rvno.2P)', '?8KJHGXS^hk&', ')', ']ib2[x.u*pC', "BFK1'H9}r9M%", ';EOSPiy9T?b!', '3TLSl3hPU3x)']
total length: 107

from: 23f!dvoR[pI+
9 7 3 5 8 1 4 2 6
5 2 6 4 7 3 1 9 8
1 8 4 2 9 6 7 5 3
2 4 7 8 6 5 3 1 9
3 9 8 1 2 4 6 7 5
6 5 1 7 3 9 8 4 2
8 1 9 3 4 2 5 6 7
7 6 5 9 1 8 2 3 4
4 3 2 6 5 7 9 8 1

from: +gel3sJ?vL!(
7 2 4 8 6 5 1 9 3
1 6 9 2 4 3 8 7 5
3 8 5 1 9 7 2 4 6
8 9 6 7 2 4 3 5 1
2 7 3 9 5 1 6 8 4
4 5 1 3 8 6 9 2 7
5 4 2 6 3 9 7 1 8
6 1 8 5 7 2 4 3 9
9 3 7 4 1 8 5 6 2

from: !"=W3R"`w|W
1 5 7 6 8 2 3 4 9
4 3 2 5 1 9 6 8 7
6 9 8 3 4 7 2 5 1
8 2 5 4 7 6 1 9 3
7 1 3 9 2 8 4 6 5
9 6 4 1 3 5 7 2 8
5 4 1 2 9 3 8 7 6
2 8 9 7 6 1 5 3 4
3 7 6 8 5 4 9 1 2

from: zAu5Rvno.2P)
8 3 5 4 1 6 9 2 7
2 9 6 8 5 7 4 3 1
4 1 7 2 9 3 6 5 8
5 6 9 1 3 4 7 8 2
1 2 3 6 7 8 5 4 9
7 4 8 5 2 9 1 6 3
6 5 2 7 8 1 3 9 4
9 8 1 3 4 5 2 7 6
3 7 4 9 6 2 8 1 5

from: ?8KJHGXS^hk&
6 2 8 4 5 1 7 9 3
5 9 4 7 3 2 6 8 1
7 1 3 6 8 9 5 4 2
2 4 7 3 1 5 8 6 9
9 6 1 8 2 7 3 5 4
3 8 5 9 6 4 2 1 7
1 5 6 2 4 3 9 7 8
4 3 9 5 7 8 1 2 6
8 7 2 1 9 6 4 3 5

from: )
1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6
2 1 4 3 6 5 8 9 7
3 6 5 8 9 7 2 1 4
8 9 7 2 1 4 3 6 5
5 3 1 6 4 8 9 7 2
6 4 8 9 7 2 5 3 1
9 7 2 5 3 1 6 4 8

from: ]ib2[x.u*pC
1 4 5 7 9 2 8 3 6
3 7 6 5 8 4 1 9 2
2 9 8 3 6 1 7 5 4
7 3 1 9 2 8 6 4 5
8 5 9 6 4 7 3 2 1
4 6 2 1 3 5 9 8 7
6 2 4 8 7 3 5 1 9
5 8 7 4 1 9 2 6 3
9 1 3 2 5 6 4 7 8

from: BFK1'H9}r9M%
5 2 7 4 1 6 9 3 8
8 6 4 3 2 9 1 5 7
1 3 9 5 7 8 6 4 2
2 9 1 8 5 4 3 7 6
3 4 8 6 9 7 5 2 1
6 7 5 1 3 2 4 8 9
7 1 2 9 4 5 8 6 3
4 8 3 2 6 1 7 9 5
9 5 6 7 8 3 2 1 4

from: ;EOSPiy9T?b!
2 4 6 7 1 3 9 8 5
1 8 5 4 9 6 7 3 2
9 3 7 8 2 5 1 4 6
6 7 8 5 4 2 3 9 1
4 9 3 1 6 8 2 5 7
5 1 2 3 7 9 4 6 8
8 2 4 9 5 7 6 1 3
7 5 9 6 3 1 8 2 4
3 6 1 2 8 4 5 7 9

from: 3TLSl3hPU3x)
8 6 1 2 9 4 5 7 3
4 7 5 3 1 8 6 9 2
3 9 2 5 6 7 8 1 4
2 3 6 4 5 9 7 8 1
1 5 4 7 8 3 2 6 9
9 8 7 6 2 1 3 4 5
5 2 9 1 7 6 4 3 8
6 4 8 9 3 2 1 5 7
7 1 3 8 4 5 9 2 6

6

Mathematica, Punktzahl: 130 9

Aktualisieren:

Nachdem diese Antwort veröffentlicht wurde, inspirierte sie eine neue Lücke: "Optimierung für die gegebenen Testfälle" . Ich werde diese Antwort jedoch so lassen, wie sie ist, als Beispiel für die Lücke. Fühlen Sie sich frei zu stimmen. Ich werde nicht verletzt.


Dadurch wird eine Zelle in einer bestimmten Rasterreihenfolge codiert, und für jede Zelle wird der Wert entsprechend den Grundregeln von Sudoku für nachfolgende Zellen ausgeschlossen. Wenn also beispielsweise eine Zelle codiert ist und nur vier Möglichkeiten hat, wird der großen Ganzzahl eine vierstellige Basis hinzugefügt. Außerdem werden die Testfälle direkt als kleine Ganzzahlen codiert, wobei alle gültigen Sudoku-Boards mit einer durchschnittlichen komprimierten Länge von ~ 12,5 Zeichen, 1,5 mehr als die optimale Länge von 11,035, korrekt komprimiert und dekomprimiert werden. Dabei ist relativ einfacher Code und kein Sudoku-Löser erforderlich.

rule=({#}&/@Union[Join[
        Range[#+1,Ceiling[#,9]],Range[#+9,81,9],
        Flatten[Outer[Plus,Range[Floor[#+8,9],Ceiling[#,27]-9,9],
            Floor[Mod[#-1,9],3]+Range[3]]]]])&/@Range[81];

encode[board_]:=
Block[{step,code,pos},
    step[{left_,x_,m_},n_]:={
        MapAt[Complement[#,{board[[n]]}]&,left,rule[[n]]],
        x+m(FirstPosition[left[[n]],board[[n]]][[1]]-1),m Length[left[[n]]]};
    code=Fold[step,{Table[Range[9],{81}],0,1},Range[81]][[2]];
    pos=Position[{206638498064127103948214,1665188010993633759502287,
        760714067080859855534739,1454154263752219616902129,6131826927558056238360710,
        237833524138130760909081600,8968162948536417279508170,3284755189143784030943149,
        912407486534781347155987,556706937207676220045188},code];
    code=If[pos==={},code+10,pos[[1,1]]-1];
    FromCharacterCode[If[code==0,{},IntegerDigits[code,95]+32]]
]    

decode[str_]:=
Block[{step,code},
    code=FromDigits[ToCharacterCode[str]-32,95];
    code=If[code<10,{206638498064127103948214,1665188010993633759502287,
        760714067080859855534739,1454154263752219616902129,6131826927558056238360710,
        237833524138130760909081600,8968162948536417279508170,3284755189143784030943149,
        912407486534781347155987,556706937207676220045188}[[code+1]],code-10];
    step[{left_,x_,board_},n_]:=Function[z,{
        MapAt[Complement[#,{z}]&,left,rule[[n]]],Quotient[x,Length[left[[n]]]],
        Append[board,z]}][left[[n,Mod[x,Length[left[[n]]]]+1]]];
    Fold[step,{Table[Range[9],{81}],code,{}},Range[81]][[3]]
]

Codierte Testfälle:

     <- empty string
!
"
#
$
%
&
'
(
)

Dies führt nicht zu einer perfekten Codierung (Durchschnitt ~ 11), da die Grundregeln einige Entscheidungen nicht ausschließen, für die es tatsächlich keine Lösung gibt. Die Leistung könnte perfekt gemacht werden (dh die große Ganzzahl wäre immer kleiner als die Anzahl der möglichen Sudoku-Karten), indem überprüft wird, ob es für einige der aktuellen Auswahlmöglichkeiten mit einem Sudoku-Löser keine Lösung gibt, und diese ebenfalls beseitigt werden.


Und ja, es ist bedauerlich, dass die Regeln dieser Herausforderung diese Lösung ermöglichen.
Mark Adler

1
Ja, die Herausforderung, wie sie geschrieben wurde, fällt in diese Falle, aber die Hardcodierung ist eine Standardlücke: meta.codegolf.stackexchange.com/a/1063/20260
xnor

1
Von diesem Meta-Post "wird erwartet, dass Ihr Programm funktioniert und nicht nur ein vorberechnetes Ergebnis ausgibt." Tatsächlich macht dieses Programm die ganze Arbeit, um die Testergebnisse zu komprimieren, und ordnet dann einfach die resultierenden großen Ganzzahlen, die diese Boards repräsentieren, den Ganzzahlen 0..9 zu, um dieses optimale Ergebnis zu erhalten. Es gibt Tafeln, die diese ganzen Zahlen abbilden, egal was passiert. Ich habe die Testfälle einfach als solche ausgewählt. Das Programm kodiert und dekodiert alle möglichen Karten und erledigt so die gesamte Arbeit, die für die Herausforderung erforderlich ist.
Mark Adler

Du hast recht, dieser Meta-Post deckt es nicht ab. Ein neues wurde soeben veröffentlicht: meta.codegolf.stackexchange.com/a/2507/20260
xnor

4

J, 254 Punkte

Kompression
fwrite&'sudoku.z' 1 u: u: 32 + (26$95) #: (9 $ !9x)#. A."1 (1&".);._2 stdin''
Dekompression
echo A.&(>:i.9)"1 (9 $ !9x) #: 95x #. 32 -~ 3 u: fread'sudoku.z'

Standard-E / A ist in J etwas umständlich, da jconsolees sich tatsächlich um eine REPL handelt. Daher habe ich mir die Freiheit genommen, die komprimierte Ausgabe in eine Datei zu schreiben.

Findet den Anagrammindex jeder Zeile, behandelt die resultierenden neun Zahlen als Basis- (9!) - Zahl und konvertiert schließlich zu Basis-95, addiert 32 und konvertiert zu ASCII, genau wie in Martin Büttners Lösung. Der Anagrammindex einer Permutation von 1..n ist einfach der Index der Permutation in der lexikalisch sortierten Liste aller solcher Permutationen, zB 5 4 3 2 1hat Anagrammindex 5! - 1 = 119 .

Alle Operationen haben einfache Umkehrungen, so dass die Dekomprimierung einfach ist.

Als Bonus haben die Beispiele ein sehr J-freundliches Format, sodass die Eingabe / Ausgabe für dekomprimierte Sudokus genau den in den Beispielen angegebenen Werten entspricht (obwohl für die Eingabe in den Encoder ein Zeilenumbruch erforderlich ist ).


Komprimierte Zeichenfolgen für die Testfälle:

#p8<!w=C6Cpgi/-+vn)FU]AHr\
"bC]wPv{8ze$l,+jkCPi0,e>-D
2}2EZZB;)WZQF@JChz}~-}}_<
#2Ofs0Mm]).e^raUu^f@sSMWc"
":kkCf2;^U_UDC?I\PC"[*gj|!
#TISE3?d7>oZ_I2.C16Z*gg
,@ CE;zX{.l\xRAc]~@vCw)8R
!oN{|Y6V"C.q<{gq(s?M@O]"]9
VORd2"*T,J;JSh<G=rR*8J1LT
#?bHF:y@oRI8e1Zdl5:BzYO.P.

Wenn Sie nur die ersten 8 Zeilen komprimieren, ist die 9. Zeile einfach zu berechnen.
Keith Randall

@KeithRandall ja, darüber habe ich auch nachgedacht. Ich denke, man kann es noch besser machen, wenn man immer die größte Zeile weglässt und dann den Index der Zeile speichert, um ihn neu zu berechnen. Ich glaube nicht, dass ich mich die Mühe machen werde, es zu implementieren, da es mich nicht bis zu 1xx bringen würde.
FireFly

3

Python 3, 120 Punkte

Dieses Programm listet alle möglichen 3x3-Blöcke auf und merkt sich, welcher davon tatsächlich im ursprünglichen Sudoku vorhanden war, und fügt dann alle diese Zahlen in einer Base-95-Darstellung zusammen. Obwohl dies der Hardcodierung sehr nahe kommt, werden die Beispiele auf meinem Computer in jeweils ca. 5 Sekunden komprimiert und dekomprimiert.

import functools

def readSudoku(s):
    values = [int(c) for c in s.split()]
    blocks = []
    for i in range(3):
        for j in range(3):
            block = []
            for k in range(3):
                for l in range(3):
                    block.append(values[i * 27 + k * 9 + j * 3 + l])
            blocks.append(block)
    return blocks

def writeSudoku(blocks):
    text = ""
    for i in range(9):
        for j in range(9):
            text += str(blocks[3 * (i // 3) + (j // 3)][3 * (i % 3) + (j % 3)]) + " "
        text += "\n"
    return text

def toASCII(num):
    chars = "".join(chr(c) for c in range(32, 127))
    if num == 0:
        return chars[0]
    else:
        return (toASCII(num // len(chars)).lstrip(chars[0]) + chars[num % len(chars)])

def toNum(text):
    chars = "".join(chr(c) for c in range(32, 127))
    return sum((len(chars) ** i * chars.index(c) for (i, c) in enumerate(text[::-1])))

def compress(sudoku):
    info = compressInfo(readSudoku(sudoku))
    return toASCII(functools.reduce(lambda old, new: (old[0] + new[0] * old[1], old[1] * new[1]), info, (0, 1))[0])

def compressInfo(sudoku):
    finished = [[0]*9]*9
    indices = [(-1, 0)]*9
    for (index, block) in enumerate(sudoku):
        counter = 0
        actual = -1
        for (location, solution) in enumerate(possibleBlocks(finished, index)):
            counter += 1
            if block == solution:
                actual = location
        if actual == -1:
            print(finished)
            print(block)
            raise ValueError
        finished[index] = block
        indices[index] = (actual, counter)
    return indices

def decompress(text):
    number = toNum(text)
    finished = [[0]*9]*9
    for i in range(9):
        blocks = list(possibleBlocks(finished, i))
        index = number % len(blocks)
        number //= len(blocks)
        finished[i] = blocks[index]
    return writeSudoku(finished)

def possibleBlocks(grid, index):
    horizontals = [grid[i] for i in (3 * (index // 3), 3 * (index // 3) + 1, 3 * (index // 3) + 2)]
    verticals = [grid[i] for i in (index % 3, index % 3 + 3, index % 3 + 6)]
    for i1 in range(1, 10):
        if any((i1 in a[0:3] for a in horizontals)) or\
           any((i1 in a[0::3] for a in verticals)):
            continue
        for i2 in range(1, 10):
            if i2 == i1 or\
               any((i2 in a[0:3] for a in horizontals)) or\
               any((i2 in a[1::3] for a in verticals)):
                continue
            for i3 in range(1, 10):
                if i3 in (i2, i1) or\
                   any((i3 in a[0:3] for a in horizontals)) or\
                   any((i3 in a[2::3] for a in verticals)):
                    continue
                for i4 in range(1, 10):
                    if i4 in (i3, i2, i1) or\
                       any((i4 in a[3:6] for a in horizontals)) or\
                       any((i4 in a[0::3] for a in verticals)):
                        continue
                    for i5 in range(1, 10):
                        if i5 in (i4, i3, i2, i1) or\
                           any((i5 in a[3:6] for a in horizontals)) or\
                           any((i5 in a[1::3] for a in verticals)):
                            continue
                        for i6 in range(1, 10):
                            if i6 in (i5, i4, i3, i2, i1) or\
                               any((i6 in a[3:6] for a in horizontals)) or\
                               any((i6 in a[2::3] for a in verticals)):
                                continue
                            for i7 in range(1, 10):
                                if i7 in (i6, i5, i4, i3, i2, i1) or\
                                   any((i7 in a[6:9] for a in horizontals)) or\
                                   any((i7 in a[0::3] for a in verticals)):
                                    continue
                                for i8 in range(1, 10):
                                    if i8 in (i7, i6, i5, i4, i3, i2, i1) or\
                                       any((i8 in a[6:9] for a in horizontals)) or\
                                       any((i8 in a[1::3] for a in verticals)):
                                        continue
                                    for i9 in range(1, 10):
                                        if i9 in (i8, i7, i6, i5, i4, i3, i2, i1) or\
                                           any((i9 in a[6:9] for a in horizontals)) or\
                                           any((i9 in a[2::3] for a in verticals)):
                                            continue
                                        yield [i1, i2, i3, i4, i5, i6, i7, i8, i9]

Die Hauptfunktionen sind compress(sudoku)und decompress(text).

Ausgänge:

!%XIjS+]P{'Y
$OPMD&Sw&tlc
$1PdUMZ7K;W*
*=M1Ak9Oj6i\
!SY5:tDJxVo;
!F ]ki%jK>*R
'PXM4J7$s?#%
#9BJZP'%Ggse
*iAH-!9%QolJ
#&L6W6i> Dd6

3

Python 2.5, 116 Punkte

Code:

emptysud=[[' ']*9 for l in range(9)]

def encconfig(dig,sud):
 conf1=[(sud[i].index(dig),i) for i in range(9)]; out=[]
 for xgroup in range(3):
  a=filter(lambda (x,y): xgroup*3<=x<(xgroup+1)*3, conf1)
  b=[x-xgroup*3 for (x,y) in sorted(a,key = lambda (x,y): y)]
  out.append([[0,1,2],[0,2,1],[1,0,2],[1,2,0],[2,0,1],[2,1,0]].index(b))
 for ygroup in range(3):
  a=filter(lambda (x,y): ygroup*3<=y<(ygroup+1)*3, conf1)
  b=[y-ygroup*3 for (x,y) in sorted(a,key = lambda (x,y): x)]
  out.append([[0,1,2],[0,2,1],[1,0,2],[1,2,0],[2,0,1],[2,1,0]].index(b))
 return sum([out[i]*(6**i) for i in range(6)])

def decconfig(conf,dig,sud=emptysud):
 inp=[]; conf1=[]; sud=[line[:] for line in sud]
 for i in range(6):
  inp.append([[0,1,2],[0,2,1],[1,0,2],[1,2,0],[2,0,1],[2,1,0]][conf%6]); conf/=6
 for groupx in range(3):
  for groupy in range(3):
   conf1.append((groupx*3+inp[groupx][groupy],groupy*3+inp[groupy+3][groupx]))
 for (x,y) in conf1: sud[y][x]=dig
 return sud

def compatible(sud,conf,dig):
 a=reduce(lambda x,y: x+y, sud)
 b=decconfig(conf,dig,sud)
 c=reduce(lambda x,y: x+y, b)
 return a.count(' ')-c.count(' ')==9

def encode(sud):
 k=[encconfig(str(i),sud) for i in range(1,10)]; m=k[0]; p=6**6
 cursud=decconfig(k[0],'1')
 for i in range(1,9):
  t=filter(lambda u: compatible(cursud,u,str(i+1)), range(6**6))
  m=m+p*t.index(k[i]); p*=len(t)
  cursud=decconfig(k[i],str(i+1),cursud)
 return m

def decode(n):
 k=[n%46656]; n/=46656; cursud=decconfig(k[-1],'1')
 for i in range(2,10):
  t=filter(lambda u: compatible(cursud,u,str(i)), range(6**6))
  k.append(n%len(t)); n/=len(t); cursud=decconfig(t[k[-1]],str(i),cursud)
 return cursud

def base95(n):
 out=''
 while n: out+=chr(32+n%95); n/=95
 return out[::-1]

def base10(s): s=s[::-1]; return sum([(ord(s[i])-32)*(95**i) for i in range(len(s))])

import time
t0=time.clock()
for part in file('sudoku.txt','rb+').read().split('\r\n\r\n'):
 sudoku=[line.split(' ') for line in part.split('\r\n')]
 encsud=base95(encode(sudoku)); sud2=decode(base10(encsud))
 print encsud,sud2==sudoku
print time.clock()-t0

Ergebnisse:

!|/FC,">;&3z
rUH">FLSgT|
)3#m|:&Zxl1c
jh _N@MG/zr
%Iye;U(6(p;0
!21.+KD0//yG
"O\B*O@8,h`y
A$`TUE#rsQu
J}ANCYXX*y5
".u2KV#4K|%a

Sehr langsam. Es dauerte 517 Sekunden, bis mein Computer ausgeführt und überprüft wurde.

encconfig eine Sudoku- und eine Ziffer von 1 bis 9, listet die xy-Koordinaten auf, an denen diese Ziffer erscheint, und gibt eine Zahl im Bereich (6 ** 6) aus, die diese Koordinaten darstellt. (die "Ziffernkonfiguration")

decconfig ist die umgekehrte Funktion. Es wird eine Zahl im Bereich (6 ** 6), eine Ziffer und eine Sudoku-Tafel benötigt (standardmäßig leer). Es gibt die Sudoku-Karte aus, die mit der Ziffernkonfiguration überlagert ist. Wenn eine der Positionen in der Ziffernkonfiguration bereits in der eingegebenen Sudoku-Karte enthalten ist, wird die Ziffer an dieser Position durch die neue Ziffer überschrieben.

kompatibel eine Sudoku-Karte und eine Ziffernkonfiguration (definiert durch conf und dig), überlagert die Ziffernkonfiguration mit der Sudoku-Karte und prüft auf Konflikte. Je nach Ergebnis wird dann True oder False zurückgegeben.

kodieren ist die Kompressionsfunktion. Es nimmt eine Sudoku-Karte und gibt eine Zahl aus, die diese repräsentiert. Dies geschieht, indem zuerst die Positionen der Einsen auf eine leere Tafel kopiert werden und eine Liste aller Konfigurationen der Nummer 2 erstellt wird, die mit der Einsen-Konfiguration kompatibel sind (die keine der bereits von der Einsen eingenommenen Stellen einnehmen) 1). Es findet dann die Reihenfolge der tatsächlichen 2-Konfiguration der Karte in der Liste und speichert sie. Anschließend kopiert es diese Konfiguration auf die neue Karte, die jetzt nur die 1 und 2 enthält. Es werden dann alle Konfigurationen der Nummer 3 aufgelistet, die mit den Positionen der Einsen und Zweisen kompatibel sind, und so weiter.

dekodieren ist die umgekehrte Funktion.

Python 2.5.


2

C #, 150 Bytes

Komprimierte Ausgabe:

KYxnUjIpNe/YDnA
F97LclGuqeTcT2c
i6D1SvMVkS0jPlQ
32FOiIoUHpz5GGs
aAazPo2RJiH+IWQ
CwAA5NIMyNzSt1I
Cc2jOjU1+buCtVM
OgQv3Dz3PqsRvGA
eSxaW3wY5e6NGFc
olQvtpDOUPJXKGw

Wie es funktioniert:

Es generiert alle möglichen Permutationen von 123456789 und merkt sich diese. Dann werden die Permutationen mit den Zeilen im Sudoku verglichen. Wenn eine passende Permutation für eine gebende Zeile gefunden wird, merkt sie sich den Index dieser Permutation. Nach jeder Zeile werden alle Permutationen entfernt, bei denen sich mindestens ein Zeichen an derselben Position wie die aktuelle Zeile befindet. Dadurch wird sichergestellt, dass jede Nummer in ihrer Spalte eindeutig ist. Dann werden alle Permutationen entfernt, die nach den Box-Kriterien nicht mehr funktionieren. Da die letzte Zeile trivial ist, werden 8 Zahlen generiert. Ich testete, wie hoch der Maximalwert jeder dieser Zahlen sein würde und generierte eine Ziffern-Zählmaske für jede Position dieser Zahlen. {6, 5, 3, 5, 3, 1, 2, 1, 1}. Die erste ist mit 362880 Permutationen offensichtlich die längste. Unter Verwendung der Ziffernmaske konstruiere ich eine BigInteger mit einer führenden 1, um sie 28 Ziffern lang zu machen. Dies ergibt insgesamt 11 Bytes. Dann werden diese Bytes in base64 konvertiert. Um ein Zeichen zu sparen, entferne ich das Zeichen = am Ende.

Der Wiederaufbau funktioniert ähnlich.

Es rekonstruiert den BigInteger aus dem base64string und wandelt ihn dann wieder in einen String um und teilt ihn unter Verwendung der erwähnten Ziffernzählmaske wieder auf. Diese Zeichenfolgen werden zurück in die Indizes analysiert.

Dann macht der Algorithmus fast dasselbe, anstatt die Zeile in den Permutationen zu finden, verwendet er nur den Index, um die Zeile abzurufen, der Rest funktioniert genauso.

Wahrscheinlich könnte dies ein bisschen besser sein, um wirklich die 94 möglichen Charaktere anstelle von nur 64 zu verwenden, aber mir fehlt der Verstand, um dies zu tun.

Quelle : Kopierbar und einfügbar, damit es mit den 10 Beispielen funktioniert. .dotNet-Fiddle teilt mir mit, dass das Memorylimit überschritten wurde, sodass Sie es auf Ihrem Computer ausführen müssen, um Text zu erhalten.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
using System.Text;

public class Programm
{
    public static void Main(string[] args)
    {
        string[] input = new[] {
            "973581426526473198184296753247865319398124675651739842819342567765918234432657981",
            "724865193169243875385197246896724351273951684451386927542639718618572439937418562", 
            "157682349432519687698347251825476193713928465964135728541293876289761534376854912", 
            "835416927296857431417293658569134782123678549748529163652781394981345276374962815", 
            "628451793594732681713689542247315869961827354385964217156243978439578126872196435", 
            "123456789456789123789123456214365897365897214897214365531648972648972531972531648", 
            "145792836376584192298361754731928645859647321462135987624873519587419263913256478",
            "527416938864329157139578642291854376348697521675132489712945863483261795956783214", 
            "246713985185496732937825146678542391493168257512379468824957613759631824361284579",
            "861294573475318692392567814236459781154783269987621345529176438648932157713845926" };

        string[] permutations = GetPermutations();
        foreach (string sudoku in input)
        {

            int[] indices = _compressSudoku(sudoku, permutations).ToArray();
            string compressedRepresentation = _toCompressedRepresentation(indices);

            Console.WriteLine(compressedRepresentation);
            indices = _fromCompressedRepresentation(compressedRepresentation);
            string decompressedSudoku = _decompressSudoku(indices, permutations);

            if (decompressedSudoku != sudoku)
                throw new Exception();
        }
        Console.ReadKey();
    }

    static int[] _digitMask = new int[] { 6, 5, 3, 5, 3, 1, 2, 1, 1 };

    private static int[] _fromCompressedRepresentation(string compressedRepresentation)
    {
        BigInteger big = new BigInteger(Convert.FromBase64String(compressedRepresentation + "="));

        string stringValue = big.ToString().Substring(1);

        List<int> indexes = new List<int>();
        int i = 0;
        while (stringValue.Length > 0)
        {
            int length = _digitMask[i++];
            string current = stringValue.Substring(0, length);
            stringValue = stringValue.Substring(length);
            indexes.Add(int.Parse(current));
        }
        return indexes.ToArray(); ;
    }

    private static string _toCompressedRepresentation(int[] indices)
    {
        StringBuilder builder = new StringBuilder("1");
        int i = 0;
        foreach (int index in indices)
        {
            string mask = "{0:D" + _digitMask[i++].ToString() + "}";
            builder.AppendFormat(mask, index);
        }

        string base64 = Convert.ToBase64String(BigInteger.Parse(builder.ToString()).ToByteArray());
        return base64.Substring(0, base64.Length - 1); // remove the = at the end.
    }

    private static IEnumerable<int> _compressSudoku(string input, string[] remainingPermutations)
    {
        string[] localRemainingPermutations = null;
        List<HashSet<char>> localUsed = null;
        for (int i = 0; i < 8; i++)
        {
            string currentRow = _getCurrentRow(input, i);
            if (i % 3 == 0)
            {
                localRemainingPermutations = remainingPermutations;
                localUsed = _initLocalUsed();
            }

            int index = 0;
            foreach (string permutation in localRemainingPermutations)
            {
                if (permutation == currentRow)
                {
                    yield return index;
                    break;
                }
                index++;
            }
            remainingPermutations = remainingPermutations.Where(permutation => _isStillValidPermutation(currentRow, permutation)).ToArray();
            if (i % 3 < 2)
            {
                for (int j = 0; j < 9; j++)
                    localUsed[j / 3].Add(currentRow[j]);
                localRemainingPermutations = localRemainingPermutations.Where(permutation => _isStillValidLocalPermutation(permutation, localUsed)).ToArray();
            }
        }
    }

    private static string _decompressSudoku(int[] indices, string[] remainingPermutations)
    {
        StringBuilder result = new StringBuilder();

        string[] localRemainingPermutations = null;
        List<HashSet<char>> localUsed = null;
        for (int i = 0; i < 9; i++)
        {
            if (i % 3 == 0)
            {
                localRemainingPermutations = remainingPermutations;
                localUsed = _initLocalUsed();
            }
            string currentRow = localRemainingPermutations[i < indices.Length ? indices[i] : 0];
            result.Append(currentRow);

            remainingPermutations = remainingPermutations.Where(permutation => _isStillValidPermutation(currentRow, permutation)).ToArray();
            if (i % 3 < 2)
            {
                for (int j = 0; j < 9; j++)
                    localUsed[j / 3].Add(currentRow[j]);
                localRemainingPermutations = localRemainingPermutations.Where(permutation => _isStillValidLocalPermutation(permutation, localUsed)).ToArray();
            }
        }
        return result.ToString();
    }

    private static string _getCurrentRow(string input, int i)
    {
        return new string(input.Skip(i * 9).Take(9).ToArray());
    }

    private static List<HashSet<char>> _initLocalUsed()
    {
        return new List<HashSet<char>> { new HashSet<char>(), new HashSet<char>(), new HashSet<char>() };
    }

    private static bool _isStillValidLocalPermutation(string permutation, List<HashSet<char>> localUsed)
    {
        for (int i = 0; i < 9; i++)
        {
            if (localUsed[i / 3].Contains(permutation[i]))
                return false;
        }
        return true;
    }

    private static bool _isStillValidPermutation(string currentRow, string permutation)
    {
        return permutation.Select((c, j) => c != currentRow[j]).All(b => b);
    }

    static string[] GetPermutations(char[] chars = null)
    {
        if (chars == null)
            chars = new[] { '1', '2', '3', '4', '5', '6', '7', '8', '9' };
        if (chars.Length == 2)
            return new[] { new String(chars), new String(chars.Reverse().ToArray()) };
        return chars.SelectMany(c => GetPermutations(chars.Where(sc => sc != c).ToArray()), (c, s) => c + s).ToArray();
    }
}

1

Perl - 290 Zeichen = 290 Punkte

Dieses Programm verwendet keine harte Codierung und komprimiert ein Raster zuverlässig in genau 29 Zeichen (theoretisch könnten einige kleinere gefunden werden).

So funktioniert das:

  • Konvertieren Sie zuerst das 9 x 9-Array in 60 Zahlen. Dies kann erfolgen, indem die letzte Spalte, die letzte Zeile und das letzte Quadrat jeder 3 × 3-Zelle entfernt werden.

  • Dann konvertieren Sie mit bigint in eine einzelne Ganzzahl mit 9 ^ 60 Elementen.

  • Dann konvertieren Sie die Bigint zur Basis 95.

Kompressor und Dekompressor:

#!/usr/bin/perl

use strict;
use warnings;
use Getopt::Long;
use bigint;

sub compress
{
    my @grid;
    my @nums;
    while (<>)
    {
        push @grid, [split];
    }

    # encode into 60 numbers omitting last from each row, column and 3 x 3 square
    my $i;
    my $j;
    for ($i=0; $i<=7; $i++)
    {
        for ($j=0; $j<=7; $j++)
        {
            push @nums, $grid[$i][$j] if (($i % 3 !=2 ) || ($j % 3 !=2));
        }
    }

    # encode into a big int
    my $code = 0;
    foreach my $n (@nums)
    {
        $code = $code * 9 + ($n-1);
    }

    # print in base 95
    my $out="";
    while ($code)
    {
        my $digit = $code % 95;
        $out = chr($digit+32).$out;
        $code -= $digit;
        $code /= 95;
    }

    print "$out";
}

sub decompress
{
    my @grid;
    my @nums;
    my $code = 0;

    # Read from base 95 into bigint
    while (<>)
    {
        chomp;
        foreach my $char (split (//, $_))
        {
            my $c =ord($char)-32;
            $code*=95;
            $code+=$c;
        }
    }

    # convert back to 60 numbers
    for (my $n = 0; $n<60; $n++)
    {
        my $d = $code % 9;
        $code -= $d;
        $code/=9;
        unshift @nums, $d+1;
    }

    # print filling in last column, row and 3 x 3 square
    for (my $i=0; $i<=8; $i++)
    {
        for (my $j=0; $j<=8; $j++)
        {
            if ($j == 8)
            {
                my $tot = 0;
                for (my $jj = 0; $jj<=7; $jj++)
                {
                    $tot += $grid[$i][$jj];
                }
                $grid[$i][$j]=45-$tot;
            }
            elsif ($i == 8)
            {
                my $tot = 0;
                for (my $ii = 0; $ii<=7; $ii++)
                {
                    $tot += $grid[$ii][$j];
                }
                $grid[$i][$j]=45-$tot;
            }
            elsif (($i % 3 == 2 ) && ($j % 3 == 2))
            {
                my $tot = 0;
                for (my $ii = $i-2; $ii<=$i; $ii++)
                {
                    for (my $jj = $j-2; $jj<=$j; $jj++)
                    {
                        next if (($ii % 3 == 2 ) && ($jj % 3 == 2));
                        $tot += $grid[$ii][$jj];
                    }
                }
                $grid[$i][$j]=45-$tot;
            }
            else
            {
                $grid[$i][$j] = shift @nums;
            }

            print $grid[$i][$j].(($j==8)?"":" ");
        }
        print "\n";
    }
}

my $decompress;
GetOptions ("d|decompress" => \$decompress);

if ($decompress)
{
    decompress;
}
else
{
    compress;
}

Ist das Score Bytes oder Punkte?
Bill Woodger

@ BillWoodger Ich denke, Bytes (gut, Zeichen) = Punkte?
Abend des

1

PHP, 214

<?php
// checks each row/col/block and removes impossible candidates
function reduce($cand){
    do{
        $old = $cand;
        for($r = 0; $r < 9; ++$r){
        for($c = 0; $c < 9; ++$c){
            if(count($cand[$r][$c]) == 1){ // if filled in
                // remove values from row and col and block
                $remove = $cand[$r][$c];
                for($i = 0; $i < 9; ++$i){
                    $cand[$r][$i] = array_diff($cand[$r][$i],$remove);
                    $cand[$i][$c] = array_diff($cand[$i][$c],$remove);
                    $br = floor($r/3)*3+$i/3;
                    $bc = floor($c/3)*3+$i%3;
                    $cand[$br][$bc] = array_diff($cand[$br][$bc],$remove);
                }
                $cand[$r][$c] = $remove;
            }
        }}
    }while($old != $cand);
    return $cand;
}

// checks candidate list for completion
function done($cand){
    for($r = 0; $r < 9; ++$r){
    for($c = 0; $c < 9; ++$c){
        if(count($cand[$r][$c]) != 1)
            return false;
    }}
    return true;
}

// board format: [[1,2,0,3,..],[..],..], $b[$row][$col]
function solve($board){
    $cand = [[],[],[],[],[],[],[],[],[]];
    for($r = 0; $r < 9; ++$r){
    for($c = 0; $c < 9; ++$c){
        if($board[$r][$c]){ // if filled in
            $cand[$r][$c] = [$board[$r][$c]];
        }else{
            $cand[$r][$c] = range(1, 9);
        }
    }}
    $cand = reduce($cand);

    if(done($cand))  // goto not really necessary
        goto end;    // but it feels good to use it 
    else return false;

    end:
    // back to board format
    $b = [];
    for($r = 0; $r < 9; ++$r){
        $b[$r] = [];
        for($c = 0; $c < 9; ++$c){
            if(count($cand[$r][$c]) == 1)
                $b[$r][$c] = array_pop($cand[$r][$c]);
            else 
                $b[$r][$c] = 0;
        }
    }
    return $b;
}

function add_zeros($board, $ind){
    for($r = 0; $r < 9; ++$r){
    for($c = 0; $c < 9; ++$c){
        $R = ($r + (int)($ind/9)) % 9;
        $C = ($c + (int)($ind%9)) % 9;
        if($board[$R][$C]){
            $tmp = $board[$R][$C];
            $board[$R][$C] = 0;
            if(!solve($board))
                $board[$R][$C] = $tmp;
        }   
    }}
    return $board;
}

function base95($str, $b, $z){
    $tmp = gmp_init($str, $b); $zero = gmp_init(0); $gmp95 = gmp_init(95);
    $out = '';
    while(gmp_cmp($tmp, $zero) > 0){
        $arr = gmp_div_qr($tmp, $gmp95);
        $tmp = $arr[0];
        $out .= chr(32+gmp_intval($arr[1]));
    }
    $out = chr((32+($z << 2))|($b - 10)) . strrev($out);
    return $out;
}

function encode($board, $ind){
    // remove last row+col
    $board[8] = [0,0,0,0,0,0,0,0,0];
    foreach($board as &$j) $j[8] = 0;

    // remove bottom corner of each box
    $board[2][2] = $board[2][5] = $board[5][2] = $board[5][5] = 0;

    $board = add_zeros($board, $ind);

    $str = '';$z=0;
    for($r = 0; $r < 8; ++$r){
        for($c = 0; $c < 8; ++$c){
            if(($r==2||$r==5)&&($c==2||$c==5)) continue;
            if($str == '' && !$board[$r][$c]) ++$z;
            else $str .= $board[$r][$c];
        }
    }

    $b10 = base95(rtrim($str,'0'), 10, $z);
    $b11 = base95(rtrim(str_replace(['00'],['A'],$str),'0'), 11, $z);
    $b12 = base95(rtrim(str_replace(['000','00'],['B','A'],$str),'0'), 12, $z);

    $l10 = strlen($b10);
    $l11 = strlen($b11);
    $l12 = strlen($b12);
    var_dump($z);
    if($l10 < $l11)
        if($l10 < $l12)
            return $b10;
        else 
            return $b12;
    else
        if($l11 < $l12)
            return $b11;
        else 
            return $b12;    
}

function decode($str){
    $fc = ord($str[0]);
    $base = 10 + ($fc & 3);
    $z = ($fc - 32) >> 2;

    $tmp = gmp_init(0);
    $zero = gmp_init(0); $gmp95 = gmp_init(95);
    while(strlen($str = substr($str, 1))){
        $tmp = gmp_mul($tmp, $gmp95);
        $tmp = gmp_add($tmp, gmp_init(ord($str[0])-32));
    }
    $str = gmp_strval($tmp, $base);
    $expanded = str_repeat('0', $z) . str_replace(['a','b'],['00','000'],$str) . str_repeat('0', 81);

    $board = [];
    $ind = 0;
    for($i = 0; $i < 8; ++$i){
        $board[$i] = [];
        for($j = 0; $j < 8; ++$j){
            if(($i == 2 || $i == 5) && ($j == 2 || $j == 5)) 
                $board[$i][$j] = 0;
            else
                $board[$i][$j] = (int)$expanded[$ind++];
        }
        $board[$i][8] = 0;
    }
    $board[8] = [0,0,0,0,0,0,0,0,0];
    return solve($board);
}

function printBoard($board){
    for($i = 0; $i < 9; ++$i){
        echo implode(' ', $board[$i]) . PHP_EOL;
    }
    flush();
}

function readBoard(){
    $board = [];
    for($r = 0; $r < 9; ++$r){
        $board[$r] = fscanf(STDIN, "%d%d%d%d%d%d%d%d%d");
    }
    return $board;
}
if(isset($argv[1])){
    if($argv[1] === 'enc'){
        $board = readBoard();
        $bests = ''; $bestl = 999;
        for($i = 0; $i < 71; ++$i){
            $str = encode($board, $i);
            $len = strlen($str);
            if($len < $bestl){
                $bestl = $len;
                $bests = $str;
            }
        }
        echo $bests . PHP_EOL;
    }else if($argv[1] === 'dec'){
        echo printBoard(decode(trim(fgets(STDIN))));
    }
}else{
    echo "Missing argument. Use `{$argv[0]} [enc|dec]`.\n";
}

Diese Lösung löscht zuerst die rechte Spalte und die untere Reihe sowie die untere rechte Ecke jedes 3x3-Blocks. Anschließend wird versucht, eine Zelle auszuräumen. Wenn eine einfache Lösung vorliegt, bleibt die Zelle leer.

Anschließend wird das Sudoku-Raster von links nach rechts und von oben nach unten mit Ausnahme der rechten Spalte, der unteren Zeile und der unteren rechten Ecke in eine Zeichenfolge formatiert. Führende Nullen werden gezählt (sei diesz ) und entfernt. Nachgestellte Nullen werden ebenfalls entfernt.

Die Zeichenfolge wird entweder in eine Ganzzahl zur Basis 10, 11 oder 12 (sei diese Basis b) mit formatiertA zwei Nullen und Bdrei dargestellt werden.

Dies wird in eine Ganzzahl zur Basis 95 umgewandelt und durch die Zahl zur Basis 95 vorangestellt z << 2 | (b - 10) .

Rufen Sie php sudoku-compress.php encan, um zu codieren undphp sudoku-compress.php dec Dekodieren. Der Encoder verwendet das in der Frage angegebene Format mit einem obligatorischen Zeilenumbruch.

Testausgänge:

R'Ngxgi#Hu~+cR)0nE)+
Veu-b454j|:tRm(b-Xk'I
V.{mi;*6-/9Ufu[~GE"e>
F/YgX]PeyeKX5=M_+,z+Z
R&3mEHyZ6sSF'-$L<:VmX
"#b'npsIv0%L,t0yr^a.+'&
UNjx*#~I/siBGck7u9eaC%
Z!SuM^f{e<ji@F&hP-S<
*0:43tD r;=x8|&I0/k[&%
B1Mm-dx@G}[2lZId/-'h{zU

1

Java, 330 Punkte

Bevor ich mich über eine so hohe Punktzahl lustig mache, möchte ich klarstellen, dass ich versucht habe, diese auf eine andere Art und Weise zu lösen. Ich war mehr oder weniger gespannt , ob ich bekommen konnte schließen , die zu meiner Überraschung ich nicht nur wusste , wie viel schlimmer würde es sich herausstellen . Hier ist der Überblick über meine Vorgehensweise:

  1. Entwickle eine Algo zum Lösen eines Sudoku-Puzzles.

  2. Entwickle einen Rätselalgo, der immer noch lösbar ist. Dies geschieht etwas zufällig, während Hinweise entfernt werden, die trivial vorher bestimmt werden können. Ich konnte ungefähr 22 Hinweise zuverlässig finden, bevor es viel zu lange dauerte.

  3. Einmal verschlüsselt, könnte das Rätsel durch ein Triplett von einstelligen ganzen Zahlen für jeden Hinweis dargestellt werden, in meinem Fall 22 Tripletts von 3. Ich dachte, wenn ich diese zu einer einzelnen 66-stelligen Zahl kombinieren könnte, dann codiere base95 dies, dann habe ich etwas, das kann leicht zu entschlüsseln.

Die codierte Zeichenfolge war länger als ich mir erhofft hatte und hatte im Allgemeinen eine Länge von 33 Zeichen. Zu diesem Zeitpunkt habe ich eine andere Methode als die Verwendung von Java BigInteger ausprobiert, bei der ich eine große Zahl aus einer 81-Bit-Maske erstellt habe, die die 81 Zellen eines Gitters darstellt, wobei 1 bedeutet, dass ein Hinweis für diese Zelle vorhanden ist. Ich habe dann diese Bitmaske zu 4-Bit-Darstellungen jedes Zellenwerts in sequentieller Reihenfolge kombiniert, auf Bytes aufgerundet und festgestellt, dass ich nach base95-Codierung ungefähr dieselbe codierte Zeichenfolgenlänge habe.

Im Grunde poste ich meinen Code für den Fall, dass jemand an einem anderen Ansatz interessiert war, der nicht so gut funktioniert hat.

Klasse Puzz

public class Puzz {

    enum By {
        Row, Column, Block
    }

    static final List<Integer> NUMBERS = Arrays.asList(new Integer[] { 1, 2, 3,
            4, 5, 6, 7, 8, 9 });

    List<Square> entries = new ArrayList<Square>();
    HashMap<Integer, List<Square>> squaresByRow = new HashMap<Integer, List<Square>>();
    HashMap<Integer, List<Square>> squaresByColumn = new HashMap<Integer, List<Square>>();
    HashMap<Integer, List<Square>> squaresByBlock = new HashMap<Integer, List<Square>>();

    public Puzz(int[][] data) {

        // Create squares put them in squares by row hashtable
        for (int r = 0; r < 9; r++) {
            List<Square> squaresInRow = new ArrayList<Square>();
            for (int c = 0; c < 9; c++) {
                Square square = new Square(r, c, data[r][c], this);
                entries.add(square);
                squaresInRow.add(square);
            }
            squaresByRow.put(r, squaresInRow);
        }

        // Put squares in column hash table
        for (int c = 0; c < 9; c++) {
            List<Square> squaresInColumn = new ArrayList<Square>();
            for (int r = 0; r < 9; r++) {
                squaresInColumn.add(squaresByRow.get(r).get(c));
            }
            squaresByColumn.put(c, squaresInColumn);
        }

        // Put squares in block hash table
        for (int i = 1; i < 10; i++) {
            squaresByBlock.put(i, new ArrayList<Square>());
        }
        for (int r = 0; r < 9; r++) {
            for (int c = 0; c < 9; c++) {
                int block = getBlock(r, c);
                squaresByBlock.get(block).add(get(r, c));
            }
        }

        // Discover the possibilities
        updatePossibilities();
    }

    public void updatePossibilities() {
        for (int r = 0; r < 9; r++) {
            for (int c = 0; c < 9; c++) {
                Square theSquare = get(r, c);
                if (theSquare.value != 0) {
                    theSquare.possibilities.removeAll(NUMBERS);
                    continue;
                } else {
                    theSquare.possibilities.addAll(NUMBERS);
                }
                int block = getBlock(r, c);
                HashSet<Square> squares = new HashSet<Square>();
                squares.addAll(squaresByRow.get(r));
                squares.addAll(squaresByColumn.get(c));
                squares.addAll(squaresByBlock.get(block));
                for (Square s : squares) {
                    if (s == theSquare)
                        continue;

                    theSquare.possibilities.remove(s.value);
                }
            }
        }
    }

    public int getValue(int row, int column) {
        return squaresByRow.get(row).get(column).value;
    }

    public Square get(int row, int column) {
        return squaresByRow.get(row).get(column);
    }

    public boolean set(int row, int column, int value) {
        if (value == 0) {
            squaresByRow.get(row).get(column).value = 0;
            updatePossibilities();
            return true;
        }

        if (isValid(row, column, value)) {
            squaresByRow.get(row).get(column).value = value;
            updatePossibilities();
            return true;
        } else {
            return false;
        }
    }

    public boolean isValidSubset(By subset, int row, int column, int value) {
        List<Dubs> dubss = new ArrayList<Dubs>();
        List<Trips> tripss = new ArrayList<Trips>();
        Square theSquare = get(row, column);
        int block = getBlock(row, column);
        List<Square> squares = new ArrayList<Square>();
        switch (subset) {
        case Row:
            squares.addAll(squaresByRow.get(row));
            break;
        case Column:
            squares.addAll(squaresByColumn.get(column));
            break;
        default:
            squares.addAll(squaresByBlock.get(block));
            break;
        }

        for (Square r : squares) {
            if (r == theSquare)
                continue;
            // if any of the impacted squares have this value then it is not a
            // valid value
            if (r.value == value)
                return false;

            if (r.possibilities.size() == 3) {
                List<Integer> poss = new ArrayList<Integer>(r.possibilities);
                tripss.add(new Trips(poss.get(0), poss.get(1), poss.get(2),
                        r.row, r.col));
            }

            if (r.possibilities.size() == 2) {
                List<Integer> poss = new ArrayList<Integer>(r.possibilities);
                dubss.add(new Dubs(poss.get(0), poss.get(1), r.row, r.col));
            }
        }

        // Find the trips and rule out the value if a triplet exists in squares
        List<Trips> tripsCopy = new ArrayList<Trips>(tripss);
        for (Trips trips : tripsCopy) {
            int countOfOccurrences = 0;
            for (Trips tr : tripss) {
                if (tr.equals(trips) && !(tr.row == row && tr.col == column))
                    countOfOccurrences++;
            }

            for (Dubs dubs : dubss) {
                if (trips.containedWithin(dubs)
                        && !(dubs.row == row && dubs.col == column))
                    countOfOccurrences++;
            }

            if (countOfOccurrences == 3 && trips.containedWithin(value))
                return false;
        }

        // Find the dubs and rule out the value if a double exists in squares
        List<Dubs> dubsCopy = new ArrayList<Dubs>(dubss);
        for (Dubs dubs : dubsCopy) {
            int countOfOccurrences = 0;
            for (Dubs du : dubss) {
                // Count occurrences of Dubs that are not the tested square
                if (du.equals(dubs) && !(du.row == row && du.col == column))
                    countOfOccurrences++;
            }

            if (countOfOccurrences == 2 && dubs.containedWithin(value))
                return false;
        }

        return true;
    }

    public boolean isValid(int row, int column, int value) {

        return isValidSubset(By.Row, row, column, value)
                && isValidSubset(By.Column, row, column, value)
                && isValidSubset(By.Block, row, column, value);
    }

    public int getBlock(int row, int column) {
        int blockRow = (int) Math.floor(row / 3);
        int columnRow = (int) Math.floor(column / 3) + 1;
        return (blockRow * 3) + columnRow;
    }

    public Puzz solve(Puzz arg, boolean top) throws Exception {
        // Make an original copy of the array
        Puzz p = (Puzz) arg.clone();
        for (int i = 1; i < 10; i++) {
            for (Square s : p.squaresByBlock.get(i)) {
                if (s.value == 0) {
                    for (Integer number : NUMBERS) {
                        if (p.set(s.row, s.col, number)) {
                            // System.out.println(p);
                            Puzz solved = solve(p, false);
                            if (solved != null)
                                return solved;
                        }
                    }
                    // no numbers fit here, return null and backtrack
                    p.set(s.row, s.col, 0);
                    return null;
                }
            }
        }

        // Check for remaining 0's
        for (Square s : p.entries) {
            if (s.value == 0)
                return null;
        }
        return p;
    }

    public Puzz scramble(int clues) throws Exception {
        Puzz p = (Puzz) clone();
        Random rand = new Random();
        int removed = 0;

        //Remove the last row, it is a freebie
        int toRemove = 81 - clues - 15;
        for (int c = 0; c < 9; c++) {
            p.set(8, c, 0);
        }
        p.set(0, 0, 0);
        p.set(0, 3, 0);
        p.set(0, 6, 0);
        p.set(3, 0, 0);
        p.set(3, 3, 0);
        p.set(3, 6, 0);

        // Keeping track of this because randomly removing squares can potentially create an 
        // unsolvable situation
        HashSet<Square> alreadyTried = new HashSet<Square>();
        while (removed < toRemove) {
            if (alreadyTried.size() >= ((toRemove + clues) - removed)) {
                // Start over
                removed = 0;
                alreadyTried = new HashSet<Square>();
                p = (Puzz)clone();
                for (int c = 0; c < 9; c++) {
                    p.set(8, c, 0);
                }
                p.set(0, 0, 0);
                p.set(0, 3, 0);
                p.set(0, 6, 0);
                p.set(3, 0, 0);
                p.set(3, 3, 0);
                p.set(3, 6, 0);
            }
            int randX = rand.nextInt((7) + 1);
            int randY = rand.nextInt((8) + 1);
            int existingValue = p.getValue(randX, randY);
            if (existingValue != 0) {
                p.set(randX, randY, 0);
                // confirm it is still solvable after removing this item
                Puzz psol = solve(p, true);
                if (psol != null && psol.equals(this)) {
                    removed++;
                    alreadyTried = new HashSet<Square>();
                    System.out.println("Clues Remaining: " + (81 - 15 - removed));
                } else {
                    // otherwise set it back to what it was and try again
                    p.set(randX, randY, existingValue);
                    Square s = new Square(randX, randY, existingValue, p);
                    alreadyTried.add(s);
                }
            }

        }
        p.updatePossibilities();
        return p;
    }

    public static String encode(Puzz p) { // Remove all zero'ed items
        StringBuffer sb = new StringBuffer();
        for (int i = 0; i < 9; i++) {
            for (Square s : p.squaresByRow.get(i)) {
                if (s.value == 0)
                    continue;
                sb.append(s.row).append(s.col).append(s.value);
            }
        }

        // number mod 95 gives lowest digit, subtract that from original number
        BigInteger num = new BigInteger(sb.toString());
        byte[] numBytes = num.toByteArray();

        StringBuffer retVal = new StringBuffer();
        while (num.compareTo(BigInteger.ZERO) > 0) {
            int modu = num.mod(new BigInteger("95")).intValue();
            retVal.append((char) (modu + 32));
            num = num.subtract(new BigInteger("" + modu));
            num = num.divide(new BigInteger("95"));
        }
        return retVal.toString();
    }


    @Override
    public boolean equals(Object arg0) {
        if (arg0 == null || !(arg0 instanceof Puzz))
            return false;

        Puzz p = (Puzz) arg0;
        for (int r = 0; r < 9; r++) {
            for (int c = 0; c < 9; c++) {
                int val1 = getValue(r, c);
                int val2 = p.getValue(r, c);
                if (val1 != val2)
                    return false;
            }
        }
        return true;
    }

    @Override
    protected Object clone() throws CloneNotSupportedException {
        int[][] data = new int[9][9];
        for (Square square : entries) {
            data[square.row][square.col] = square.value;
        }

        return new Puzz(data);
    }

    @Override
    public String toString() {
        if (entries == null)
            return "";
        StringBuffer sb = new StringBuffer();
        for (int r = 0; r < 9; r++) {
            for (int c = 0; c < 9; c++) {
                sb.append(getValue(r, c)).append(' ');
            }
            sb.append('\n');
        }
        return sb.toString();
    }

}

class Square {

    public Square(int row, int col, Puzz p) {
        this.row = row;
        this.col = col;
        this.p = p;
    }

    public Square(int row, int col, int value, Puzz p) {
        this(row, col, p);
        this.value = value;
    }

    int row;
    int col;
    int value;
    HashSet<Integer> possibilities = new HashSet<Integer>(Puzz.NUMBERS);
    Puzz p;

    @Override
    protected Object clone() throws CloneNotSupportedException {
        Square s = new Square(row, col, value, p);
        s.possibilities = new HashSet<Integer>();
        for (Integer val : possibilities) {
            s.possibilities.add(new Integer(val));
        }
        return s;
    }

    @Override
    public boolean equals(Object obj) {
        if (!(obj instanceof Square))
            return false;

        Square s = (Square) obj;
        return row == s.row && col == s.col && value == s.value
                && p.equals(s.p);
    }

    @Override
    public int hashCode() {
        return row ^ col ^ value ^ p.hashCode();
    }
}

class Dubs {
    int p1;
    int p2;

    int row, col;

    public Dubs(int p1, int p2) {
        this.p1 = p1;
        this.p2 = p2;
    }

    public Dubs(int p1, int p2, int row, int col) {
        this(p1, p2);
        this.row = row;
        this.col = col;
    }

    public boolean containedWithin(int value) {
        return (p1 == value || p2 == value);
    }

    @Override
    public boolean equals(Object arg0) {
        if (!(arg0 instanceof Dubs))
            return false;

        Dubs d = (Dubs) arg0;
        return (this.p1 == d.p1 || this.p1 == d.p2)
                && (this.p2 == d.p1 || this.p2 == d.p2);
    }
}

class Trips {
    int p1;
    int p2;
    int p3;
    int row, col;

    public Trips(int p1, int p2) {
        this.p1 = p1;
        this.p2 = p2;
    }

    public Trips(int p1, int p2, int p3) {
        this(p1, p2);
        this.p3 = p3;
    }

    public Trips(int p1, int p2, int p3, int row, int col) {
        this(p1, p2, p3);
        this.row = row;
        this.col = col;
    }

    public boolean containedWithin(int value) {
        return (p1 == value || p2 == value || p3 == value);
    }

    public boolean containedWithin(Dubs d) {
        return (d.p1 == p1 || d.p1 == p2 || d.p1 == p3)
                && (d.p2 == p1 || d.p2 == p2 || d.p2 == p3);
    }

    public boolean equals(Object arg0) {
        if (!(arg0 instanceof Trips))
            return false;

        Trips t = (Trips) arg0;
        return (this.p1 == t.p1 || this.p1 == t.p2 || this.p1 == t.p3)
                && (this.p2 == t.p1 || this.p2 == t.p2 || this.p2 == t.p3)
                && (this.p3 == t.p1 || this.p3 == t.p2 || this.p3 == t.p3);
    }
}

Mein Testfall

public class TestCompression extends TestCase {

    public static int[][] test1 = new int[][] {
            new int[] { 9, 7, 3, 5, 8, 1, 4, 2, 6 },
            new int[] { 5, 2, 6, 4, 7, 3, 1, 9, 8 },
            new int[] { 1, 8, 4, 2, 9, 6, 7, 5, 3 },
            new int[] { 2, 4, 7, 8, 6, 5, 3, 1, 9 },
            new int[] { 3, 9, 8, 1, 2, 4, 6, 7, 5 },
            new int[] { 6, 5, 1, 7, 3, 9, 8, 4, 2 },
            new int[] { 8, 1, 9, 3, 4, 2, 5, 6, 7 },
            new int[] { 7, 6, 5, 9, 1, 8, 2, 3, 4 },
            new int[] { 4, 3, 2, 6, 5, 7, 9, 8, 1 } };
    public static int[][] test2 = new int[][] {
            new int[] { 7, 2, 4, 8, 6, 5, 1, 9, 3 },
            new int[] { 1, 6, 9, 2, 4, 3, 8, 7, 5 },
            new int[] { 3, 8, 5, 1, 9, 7, 2, 4, 6 },
            new int[] { 8, 9, 6, 7, 2, 4, 3, 5, 1 },
            new int[] { 2, 7, 3, 9, 5, 1, 6, 8, 4 },
            new int[] { 4, 5, 1, 3, 8, 6, 9, 2, 7 },
            new int[] { 5, 4, 2, 6, 3, 9, 7, 1, 8 },
            new int[] { 6, 1, 8, 5, 7, 2, 4, 3, 9 },
            new int[] { 9, 3, 7, 4, 1, 8, 5, 6, 2 } };
    public static int[][] test3 = new int[][] {
            new int[] { 1, 5, 7, 6, 8, 2, 3, 4, 9 },
            new int[] { 4, 3, 2, 5, 1, 9, 6, 8, 7 },
            new int[] { 6, 9, 8, 3, 4, 7, 2, 5, 1 },
            new int[] { 8, 2, 5, 4, 7, 6, 1, 9, 3 },
            new int[] { 7, 1, 3, 9, 2, 8, 4, 6, 5 },
            new int[] { 9, 6, 4, 1, 3, 5, 7, 2, 8 },
            new int[] { 5, 4, 1, 2, 9, 3, 8, 7, 6 },
            new int[] { 2, 8, 9, 7, 6, 1, 5, 3, 4 },
            new int[] { 3, 7, 6, 8, 5, 4, 9, 1, 2 } };
    public static int[][] test4 = new int[][] {
            new int[] { 8, 3, 5, 4, 1, 6, 9, 2, 7 },
            new int[] { 2, 9, 6, 8, 5, 7, 4, 3, 1 },
            new int[] { 4, 1, 7, 2, 9, 3, 6, 5, 8 },
            new int[] { 5, 6, 9, 1, 3, 4, 7, 8, 2 },
            new int[] { 1, 2, 3, 6, 7, 8, 5, 4, 9 },
            new int[] { 7, 4, 8, 5, 2, 9, 1, 6, 3 },
            new int[] { 6, 5, 2, 7, 8, 1, 3, 9, 4 },
            new int[] { 9, 8, 1, 3, 4, 5, 2, 7, 6 },
            new int[] { 3, 7, 4, 9, 6, 2, 8, 1, 5 } };
    public static int[][] test5 = new int[][] {
            new int[] { 6, 2, 8, 4, 5, 1, 7, 9, 3 },
            new int[] { 5, 9, 4, 7, 3, 2, 6, 8, 1 },
            new int[] { 7, 1, 3, 6, 8, 9, 5, 4, 2 },
            new int[] { 2, 4, 7, 3, 1, 5, 8, 6, 9 },
            new int[] { 9, 6, 1, 8, 2, 7, 3, 5, 4 },
            new int[] { 3, 8, 5, 9, 6, 4, 2, 1, 7 },
            new int[] { 1, 5, 6, 2, 4, 3, 9, 7, 8 },
            new int[] { 4, 3, 9, 5, 7, 8, 1, 2, 6 },
            new int[] { 8, 7, 2, 1, 9, 6, 4, 3, 5 } };
    public static int[][] test6 = new int[][] {
            new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 },
            new int[] { 4, 5, 6, 7, 8, 9, 1, 2, 3 },
            new int[] { 7, 8, 9, 1, 2, 3, 4, 5, 6 },
            new int[] { 2, 1, 4, 3, 6, 5, 8, 9, 7 },
            new int[] { 3, 6, 5, 8, 9, 7, 2, 1, 4 },
            new int[] { 8, 9, 7, 2, 1, 4, 3, 6, 5 },
            new int[] { 5, 3, 1, 6, 4, 8, 9, 7, 2 },
            new int[] { 6, 4, 8, 9, 7, 2, 5, 3, 1 },
            new int[] { 9, 7, 2, 5, 3, 1, 6, 4, 8 } };
    public static int[][] test7 = new int[][] {
            new int[] { 1, 4, 5, 7, 9, 2, 8, 3, 6 },
            new int[] { 3, 7, 6, 5, 8, 4, 1, 9, 2 },
            new int[] { 2, 9, 8, 3, 6, 1, 7, 5, 4 },
            new int[] { 7, 3, 1, 9, 2, 8, 6, 4, 5 },
            new int[] { 8, 5, 9, 6, 4, 7, 3, 2, 1 },
            new int[] { 4, 6, 2, 1, 3, 5, 9, 8, 7 },
            new int[] { 6, 2, 4, 8, 7, 3, 5, 1, 9 },
            new int[] { 5, 8, 7, 4, 1, 9, 2, 6, 3 },
            new int[] { 9, 1, 3, 2, 5, 6, 4, 7, 8 } };
    public static int[][] test8 = new int[][] {
            new int[] { 5, 2, 7, 4, 1, 6, 9, 3, 8 },
            new int[] { 8, 6, 4, 3, 2, 9, 1, 5, 7 },
            new int[] { 1, 3, 9, 5, 7, 8, 6, 4, 2 },
            new int[] { 2, 9, 1, 8, 5, 4, 3, 7, 6 },
            new int[] { 3, 4, 8, 6, 9, 7, 5, 2, 1 },
            new int[] { 6, 7, 5, 1, 3, 2, 4, 8, 9 },
            new int[] { 7, 1, 2, 9, 4, 5, 8, 6, 3 },
            new int[] { 4, 8, 3, 2, 6, 1, 7, 9, 5 },
            new int[] { 9, 5, 6, 7, 8, 3, 2, 1, 4 } };
    public static int[][] test9 = new int[][] {
            new int[] { 2, 4, 6, 7, 1, 3, 9, 8, 5 },
            new int[] { 1, 8, 5, 4, 9, 6, 7, 3, 2 },
            new int[] { 9, 3, 7, 8, 2, 5, 1, 4, 6 },
            new int[] { 6, 7, 8, 5, 4, 2, 3, 9, 1 },
            new int[] { 4, 9, 3, 1, 6, 8, 2, 5, 7 },
            new int[] { 5, 1, 2, 3, 7, 9, 4, 6, 8 },
            new int[] { 8, 2, 4, 9, 5, 7, 6, 1, 3 },
            new int[] { 7, 5, 9, 6, 3, 1, 8, 2, 4 },
            new int[] { 3, 6, 1, 2, 8, 4, 5, 7, 9 } };
    public static int[][] test10 = new int[][] {
            new int[] { 8, 6, 1, 2, 9, 4, 5, 7, 3 },
            new int[] { 4, 7, 5, 3, 1, 8, 6, 9, 2 },
            new int[] { 3, 9, 2, 5, 6, 7, 8, 1, 4 },
            new int[] { 2, 3, 6, 4, 5, 9, 7, 8, 1 },
            new int[] { 1, 5, 4, 7, 8, 3, 2, 6, 9 },
            new int[] { 9, 8, 7, 6, 2, 1, 3, 4, 5 },
            new int[] { 5, 2, 9, 1, 7, 6, 4, 3, 8 },
            new int[] { 6, 4, 8, 9, 3, 2, 1, 5, 7 },
            new int[] { 7, 1, 3, 8, 4, 5, 9, 2, 6 } };

    @Test
    public void test2() throws Exception {
        int encodedLength = 0;
        Puzz expected = new Puzz(test1);
        Puzz test = (Puzz) expected.clone();

        long start = System.currentTimeMillis();
        test = test.scramble(22);
        long duration = System.currentTimeMillis() - start;
        System.out.println("Duration of scramble for 22 clue puzzle: " + duration);
        System.out.println("Scrambled");
        System.out.println(test);

        String encoded = Puzz.encode(test);

        System.out.println("Encoded Length with BigInteger: " + encoded.length());
        encodedLength += encoded.length();


        expected = new Puzz(test2);
        test = (Puzz) expected.clone();

        start = System.currentTimeMillis();
        test = test.scramble(22);
        duration = System.currentTimeMillis() - start;
        System.out.println("Duration of scramble for 22 clue puzzle: " + duration);
        System.out.println("Scrambled");
        System.out.println(test);

        encoded = Puzz.encode(test);

        System.out.println("Encoded Length with BigInteger: " + encoded.length());
        encodedLength += encoded.length();

        expected = new Puzz(test3);
        test = (Puzz) expected.clone();

        start = System.currentTimeMillis();
        test = test.scramble(22);
        duration = System.currentTimeMillis() - start;
        System.out.println("Duration of scramble for 22 clue puzzle: " + duration);
        System.out.println("Scrambled");
        System.out.println(test);

        encoded = Puzz.encode(test);

        System.out.println("Encoded Length with BigInteger: " + encoded.length());
        encodedLength += encoded.length();

        expected = new Puzz(test4);
        test = (Puzz) expected.clone();

        start = System.currentTimeMillis();
        test = test.scramble(22);
        duration = System.currentTimeMillis() - start;
        System.out.println("Duration of scramble for 22 clue puzzle: " + duration);
        System.out.println("Scrambled");
        System.out.println(test);

        encoded = Puzz.encode(test);

        System.out.println("Encoded Length with BigInteger: " + encoded.length());
        encodedLength += encoded.length();

        expected = new Puzz(test5);
        test = (Puzz) expected.clone();

        start = System.currentTimeMillis();
        test = test.scramble(22);
        duration = System.currentTimeMillis() - start;
        System.out.println("Duration of scramble for 22 clue puzzle: " + duration);
        System.out.println("Scrambled");
        System.out.println(test);

        encoded = Puzz.encode(test);

        System.out.println("Encoded Length with BigInteger: " + encoded.length());
        encodedLength += encoded.length();

        expected = new Puzz(test6);
        test = (Puzz) expected.clone();

        start = System.currentTimeMillis();
        test = test.scramble(22);
        duration = System.currentTimeMillis() - start;
        System.out.println("Duration of scramble for 22 clue puzzle: " + duration);
        System.out.println("Scrambled");
        System.out.println(test);

        encoded = Puzz.encode(test);

        System.out.println("Encoded Length with BigInteger: " + encoded.length());
        encodedLength += encoded.length();

        expected = new Puzz(test7);
        test = (Puzz) expected.clone();

        start = System.currentTimeMillis();
        test = test.scramble(22);
        duration = System.currentTimeMillis() - start;
        System.out.println("Duration of scramble for 22 clue puzzle: " + duration);
        System.out.println("Scrambled");
        System.out.println(test);

        encoded = Puzz.encode(test);

        System.out.println("Encoded Length with BigInteger: " + encoded.length());
        encodedLength += encoded.length();

        expected = new Puzz(test8);
        test = (Puzz) expected.clone();

        start = System.currentTimeMillis();
        test = test.scramble(22);
        duration = System.currentTimeMillis() - start;
        System.out.println("Duration of scramble for 22 clue puzzle: " + duration);
        System.out.println("Scrambled");
        System.out.println(test);

        encoded = Puzz.encode(test);

        System.out.println("Encoded Length with BigInteger: " + encoded.length());
        encodedLength += encoded.length();

        expected = new Puzz(test9);
        test = (Puzz) expected.clone();

        start = System.currentTimeMillis();
        test = test.scramble(22);
        duration = System.currentTimeMillis() - start;
        System.out.println("Duration of scramble for 22 clue puzzle: " + duration);
        System.out.println("Scrambled");
        System.out.println(test);

        encoded = Puzz.encode(test);

        System.out.println("Encoded Length with BigInteger: " + encoded.length());
        encodedLength += encoded.length();

        expected = new Puzz(test10);
        test = (Puzz) expected.clone();

        start = System.currentTimeMillis();
        test = test.scramble(22);
        duration = System.currentTimeMillis() - start;
        System.out.println("Duration of scramble for 22 clue puzzle: " + duration);
        System.out.println("Scrambled");
        System.out.println(test);

encoded = Puzz.encode(test);
encodedLength += encoded.length();

        System.out.println("Final Result: " + encodedLength); 
    }

}

Ausgang testen

Duration of scramble for 22 clue puzzle: 427614
Scrambled
0 0 3 0 0 0 0 0 6 
0 2 0 0 0 0 0 9 0 
0 0 0 0 9 6 7 5 0 
0 4 0 0 0 5 0 1 0 
0 0 0 1 0 0 0 0 0 
0 5 0 0 0 0 8 4 0 
0 0 0 3 0 0 5 0 7 
7 0 0 9 0 8 0 3 0 
0 0 0 0 0 0 0 0 0 

Building encoded string: U5[XZ+C6Bgf)}O."gDE)`\)kNv7*6}1w+
Encoded Length with BigInteger: 33

Duration of scramble for 22 clue puzzle: 167739
Scrambled
0 2 4 0 0 0 0 0 0 
1 6 0 0 4 0 8 0 5 
0 0 5 0 9 7 2 0 0 
0 0 0 0 2 4 0 0 1 
0 0 3 9 0 0 0 0 0 
0 0 0 0 0 0 0 0 7 
0 4 0 0 0 0 0 0 8 
0 1 0 5 0 0 0 3 0 
0 0 0 0 0 0 0 0 0 

Building encoded string: 7\c^oE}`H6@P.&E)Zu\t>B"k}Vf<[0a3&
Encoded Length with BigInteger: 33

Duration of scramble for 22 clue puzzle: 136364
Scrambled
0 0 7 0 8 0 0 0 0 
0 3 2 0 0 9 6 0 0 
0 0 0 0 0 0 2 5 0 
0 2 0 0 0 6 0 0 0 
0 0 0 9 0 0 0 0 0 
0 0 4 1 0 5 7 2 0 
5 0 1 0 0 0 0 7 0 
2 8 9 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

Building encoded string: [S#bHlTDwS,&w,moQ{WN}Z9!{1C>.vN{-
Encoded Length with BigInteger: 33

Duration of scramble for 22 clue puzzle: 392150
Scrambled
0 0 0 0 0 6 0 0 0 
0 9 0 0 0 0 0 0 1 
4 0 0 0 0 3 6 0 8 
0 0 0 0 0 0 0 8 0 
0 0 3 0 7 8 0 0 9 
7 0 0 0 0 0 0 0 3 
6 0 2 0 0 0 0 9 0 
9 0 1 3 4 0 2 0 0 
0 0 0 0 0 0 0 0 0 

Building encoded string: T-yKJ2<d)Dj~[~>]334*9YpxM<JQNf2|<
Encoded Length with BigInteger: 33

Duration of scramble for 22 clue puzzle: 169355
Scrambled
0 0 0 0 0 1 0 0 0 
0 9 4 7 0 0 0 8 0 
0 1 3 0 0 0 5 0 2 
0 0 0 0 0 0 0 0 9 
0 0 0 0 2 7 3 5 4 
0 8 0 0 0 0 0 1 0 
0 0 0 0 4 0 9 0 8 
0 0 0 5 0 0 0 0 6 
0 0 0 0 0 0 0 0 0 

Building encoded string: 5@.=FmOKws7jl5*hWMQqqou\lv'e^Q}D:
Encoded Length with BigInteger: 33

Duration of scramble for 22 clue puzzle: 786
Scrambled
0 2 3 0 0 6 0 0 0 
0 5 0 7 0 0 1 2 3 
0 8 0 0 2 0 0 0 0 
0 0 0 0 0 5 0 0 7 
0 6 5 8 0 0 0 0 0 
0 0 7 0 0 4 3 0 0 
0 3 0 0 4 0 0 0 2 
0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 

Building encoded string: wY%(O9tOSDZu-PBaFl^.f0xH7C~e)=\3&
Encoded Length with BigInteger: 33

Duration of scramble for 22 clue puzzle: 826530
Scrambled
0 0 0 0 9 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 9 0 3 0 1 7 0 0 
0 3 0 0 0 8 0 4 5 
0 0 9 0 0 7 3 0 0 
0 0 2 0 3 0 0 8 0 
6 0 0 0 0 0 0 0 9 
5 0 0 4 1 0 2 0 3 
0 0 0 0 0 0 0 0 0 

Building encoded string: K|>.Aa?,8e&NRL;*ut=+Iqk8E$@&-zlF9
Encoded Length with BigInteger: 33

Duration of scramble for 22 clue puzzle: 4834
Scrambled
0 2 0 0 1 0 0 3 8 
8 6 0 3 0 0 1 0 0 
0 0 0 0 0 8 6 0 2 
0 0 0 0 0 0 0 7 0 
0 0 8 0 0 0 0 0 0 
0 0 0 0 3 0 0 0 0 
0 0 2 0 0 5 8 0 3 
4 0 0 0 0 1 7 9 0 
0 0 0 0 0 0 0 0 0 

Building encoded string: GOS0!r=&HR5PZ|ezy>*l7 HWU`wIN7Q4&
Encoded Length with BigInteger: 33

Duration of scramble for 22 clue puzzle: 42126
Scrambled
0 0 0 0 0 3 0 0 5 
0 0 5 4 0 0 0 3 2 
9 0 0 8 0 0 0 0 0 
0 0 0 0 0 2 0 0 0 
0 0 0 0 6 8 2 0 7 
5 1 0 0 7 0 0 0 8 
8 0 0 0 5 0 0 1 0 
7 0 0 0 0 0 0 0 4 
0 0 0 0 0 0 0 0 0 

Building encoded string: [4#9D_?I1.!h];Y_2!iqLyngbBJ&k)FF;
Encoded Length with BigInteger: 33

Duration of scramble for 22 clue puzzle: 156182
Scrambled
0 6 0 0 0 0 0 7 0 
4 0 5 3 1 0 0 0 2 
0 0 0 0 6 0 0 0 0 
0 3 0 0 0 9 0 8 1 
0 0 0 0 0 0 0 0 0 
0 0 7 0 0 1 0 4 5 
5 0 9 0 0 0 0 0 8 
6 0 0 0 3 2 0 0 0 
0 0 0 0 0 0 0 0 0 

Building encoded string: r+a;I%hGj4YCA-pXz+n=ioRL:agzH'K<(
Encoded Length with BigInteger: 33
Final Result: 330

Ich weiß nicht, ob Sie dies bereits tun, aber die letzte Zeile Ihres Scrambles besteht immer aus Nullen. Eine mögliche Optimierung besteht darin, die letzte Zeile für selbstverständlich zu halten und davon auszugehen, dass am Ende alle Zellen fehlen Ihrer Kodierung sind alle Nullen.
kukac67

0

C ++ 241, Ergebnis: 82 · 10 = 820

Fügt hinzu '!' zum Anfang der codierten Zeichenfolge, um zu bestimmen, welche Operation ausgeführt werden soll.

Golf 241 Zeichen

void D(char i){static int x=0;cout<<(int)(i-'a')<<" ";if(x++%8==0) cout<<endl;}
int main()
{
int i=81;int n;string S;
char c=cin.peek();
if(c=='!'){cin>>S;for_each(S.begin()+1,S.end(),D);}
else{S.push_back('!');while(i--){cin>>n;S.push_back(n+'a');}cout<<S;}
}

Ungolfed 312 Zeichen

void decode(char i) {
static int x=0;
cout<<(int)(i-'a')<<" ";
if(x++%8==0) cout<<endl;
}
int main()
{
int i=81;
int n;
string d;
char c=cin.peek();
if(c=='!'){
cin>>d;
for_each(d.begin()+1,d.end(),decode);
}
else{
d.push_back('!');
while(i--)
{
cin>>n;
d.push_back(n+'a');
}
cout<<d;
}
}

4
Das ist kein Code Golf. Bei dieser Herausforderung geht es darum, die Länge der codierten Platine zu minimieren ...
John Dvorak,

1
Also ist jedes Sudoku-Gitter auf eine Länge von 82 Bytes komprimierbar?
Beta Decay
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.