Scala 9146 (min. 7, max. 15, durchschnittlich 9,15) Zeit: 2000 Sekunden
Wie bei vielen Einträgen beginne ich damit, die Gesamtlänge zu ermitteln, die Leerzeichen zu finden, ein bisschen mehr Informationen zu erhalten, auf die verbleibenden Kandidaten zu reduzieren und dann Sätze zu erraten.
Inspiriert von dem ursprünglichen xkcd-Comic versuchte ich, mein rudimentäres Verständnis der Informationstheorie anzuwenden. Es gibt eine Billion möglicher Phrasen oder knapp 40 Bit Entropie. Ich habe ein Ziel von unter 10 Vermutungen pro Testphrase festgelegt, was bedeutet, dass wir durchschnittlich fast 5 Bits pro Abfrage lernen müssen (da die letzte unbrauchbar ist). Mit jeder Vermutung erhalten wir zwei Zahlen zurück und je größer der potenzielle Bereich dieser Zahlen ist, desto mehr erwarten wir zu lernen.
Um die Logik zu vereinfachen, verwende ich jede Abfrage als zwei separate Fragen, sodass jede Vermutungszeichenfolge aus zwei Teilen besteht, einer linken Seite, die an der Anzahl der korrekten Positionen interessiert ist (schwarze Stifte im Mastermind) und einer rechten Seite, die an der Anzahl der korrekten Zeichen interessiert ist ( Gesamtstifte). Hier ist ein typisches Spiel:
Phrase: chasteness legume such
1: p0 ( 1/21) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -aaaaaaaaaaaabbbbbbbbbcccccccccdddddddddeeeeeeeeeeeeeeefffffffffgggggggggggghhhhhhhhhiiiiiiiiiiiiiiiiiijjjjjjkkkkkkkkkllllllllllllmmmmmmmmmnnnnnnnnnnnnoooooooooooopppppppppqqqrrrrrrrrrrrrssssssssssssssstttttttttuuuuuuuuuuuuvvvvvvwwwwwwxxxyyyyyyyyyzzzzzz
2: p1 ( 0/ 8) - - - --- - ---aaaaaaaaaaaadddddddddeeeeeeeeeeeeeeefffffffffjjjjjjkkkkkkkkkllllllllllllooooooooooooqqqwwwwwwxxxyyyyyyyyyzzzzzz
3: p1 ( 0/11) ----- ------ ---------bbbbbbbbbdddddddddeeeeeeeeeeeeeeefffffffffgggggggggggghhhhhhhhhiiiiiiiiiiiiiiiiiikkkkkkkkkllllllllllllppppppppptttttttttvvvvvv
4: p1 ( 2/14) ---------- ------ ----ccccccccceeeeeeeeeeeeeeehhhhhhhhhkkkkkkkkkllllllllllllmmmmmmmmmooooooooooooqqqrrrrrrrrrrrrsssssssssssssssvvvvvvwwwwwwzzzzzz
5: p3 ( 3/ 3) iaaiiaaiai iaaiia iaaiaaaaaaaaaaaabbbbbbbbbdddddddddiiiiiiiiiiiiiiiiiikkkkkkkkkllllllllllllqqquuuuuuuuuuuuvvvvvvyyyyyyyyy
6: p3 ( 3/11) aaaasassaa aaaasa aaaaaaaaaaaaaaaabbbbbbbbbcccccccccdddddddddfffffffffhhhhhhhhhppppppppprrrrrrrrrrrrssssssssssssssstttttttttuuuuuuuuuuuuwwwwwwxxxyyyyyyyyy
7: p4 ( 4/10) accretions shrive pews
8: p4 ( 4/ 6) barometric terror heir
9: p4 SUCCESS chasteness legume such
Räume erraten
Jede Leerzeichenvermutung kann höchstens 2 schwarze Stifte zurückgeben. Ich habe versucht, Vermutungen zu erstellen, um 0,1 und 2 Stifte mit den Wahrscheinlichkeiten 1 / 4,1 / 2 bzw. 1/4 zurückzugeben. Ich glaube, dies ist das Beste, was Sie für erwartete 1,5 Bit an Informationen tun können. Ich entschied mich für eine abwechselnde Zeichenfolge für die erste Vermutung, gefolgt von zufällig generierten, obwohl es sich normalerweise lohnt, erst beim zweiten oder dritten Versuch zu erraten, da wir die Wortlängenhäufigkeiten kennen.
Das Lernen des Zeichensatzes zählt
Für die Vermutungen auf der rechten Seite wähle ich zufällige (immer 2 von e / i / a / s) Zeichensätze aus, sodass die erwartete zurückgegebene Zahl die Hälfte der Phrasenlänge beträgt. Eine höhere Varianz bedeutet mehr Informationen und von der Wikipedia-Seite zur Binomialverteilung schätze ich ungefähr 3,5 Bits pro Abfrage (zumindest für die ersten paar, bevor die Informationen überflüssig werden). Sobald der Abstand bekannt ist, verwende ich zufällige Zeichenfolgen der häufigsten Buchstaben auf der linken Seite, die so ausgewählt wurden, dass sie nicht mit der rechten Seite in Konflikt stehen.
Die verbleibenden Kandidaten zusammenführen
Dieses Spiel ist ein Kompromiss zwischen Rechengeschwindigkeit und Abfrageeffizienz, und die Aufzählung der verbleibenden Kandidaten kann ohne strukturierte Informationen wie bestimmte Charaktere sehr lange dauern. Ich habe diesen Teil optimiert, indem ich hauptsächlich Informationen sammle, die nicht mit der Wortreihenfolge übereinstimmen. Dadurch kann ich die Zeichensatzzählungen für jedes einzelne Wort vorab berechnen und mit den Zählungen vergleichen, die ich aus den Abfragen gelernt habe. Ich packe diese Zahlen in eine Long-Ganzzahl und teste mit dem Maschinengleichheitskomparator und dem Addierer alle meine Zeichenzahlen in parralel. Dies war ein großer Gewinn. Ich kann bis zu 9 Zählungen im Long packen, aber ich fand, dass das Sammeln der zusätzlichen Informationen es nicht wert war und entschied mich für 6 bis 7.
Nachdem die verbleibenden Kandidaten bekannt sind, wähle ich den mit dem niedrigsten erwarteten Log der verbleibenden Kandidaten aus, wenn der Satz einigermaßen klein ist. Wenn das Set groß genug ist, um diese Zeit in Anspruch zu nehmen, wähle ich aus einem kleinen Musterset.
Vielen Dank an alle. Das war ein lustiges Spiel und hat mich dazu verleitet, mich auf der Seite anzumelden.
Update: Bereinigter Code zur Vereinfachung und Lesbarkeit mit geringfügigen Änderungen am Algorithmus, was zu einer verbesserten Punktzahl führt.
Ursprüngliche Punktzahl: 9447 (min. 7, max. 13, durchschnittlich 9,45) Zeit: 1876 Sekunden
Neuer Code ist 278 Zeilen von Scala, unten
object HorseBatteryStapleMastermind {
def main(args: Array[String]): Unit = run() print ()
val n = 1000 // # phrases to run
val verbose = true // whether to print each game
//tweakable parameters
val prob = 0.132 // probability threshold to guess spacing
val rngSeed = 11 // seed for random number generator
val minCounts = 6 // minimum char-set counts before guessing
val startTime = System.currentTimeMillis()
def time = System.currentTimeMillis() - startTime
val phraseList = io.Source.fromFile("pass.txt").getLines.toArray
val wordList = io.Source.fromFile("words.txt").getLines.toArray
case class Result(num: Int = 0, total: Int = 0, min: Int = Int.MaxValue, max: Int = 0) {
def update(count: Int) = Result(num + 1, total + count, Math.min(count, min), Math.max(count, max))
def resultString = f"#$num%4d Total: $total%5d Avg: ${total * 1.0 / num}%2.2f Range: ($min%2d-$max%2d)"
def timingString = f"Time: Total: ${time / 1000}%5ds Avg: ${time / (1000.0 * num)}%2.2fs"
def print() = println(s"$resultString\n$timingString")
}
def run(indices: Set[Int] = (0 until n).to[Set], prev: Result = Result()): Result = {
if (verbose && indices.size < n) prev.print()
val result = prev.update(Querent play Oracle(indices.head, phraseList(indices.head)))
if (indices.size == 1) result else run(indices.tail, result)
}
case class Oracle(idx: Int, phrase: String) {
def query(guess: String) = Grade.compute(guess, phrase)
}
object Querent {
def play(oracle: Oracle, n: Int = 0, notes: Notes = Notes0): Int = {
if (verbose && n == 0) println("=" * 100 + f"\nPhrase ${oracle.idx}%3d: ${oracle.phrase}")
val guess = notes.bestGuess
val grade = oracle.query(guess)
if (verbose) println(f"${n + 1}%2d: p${notes.phase} $grade $guess")
if (grade.success) n + 1 else play(oracle, n + 1, notes.update(guess, grade))
}
abstract class Notes(val phase: Int) {
def bestGuess: String
def update(guess: String, grade: Grade): Notes
}
case object Notes0 extends Notes(0) {
def bestGuess = GuessPack.firstGuess
def genSpaceCandidates(grade: Grade): List[Spacing] = (for {
wlen1 <- WordList.lengthRange
wlen2 <- WordList.lengthRange
spacing = Spacing(wlen1, wlen2, grade.total)
if spacing.freq > 0
if grade.black == spacing.black(bestGuess)
} yield spacing).sortBy(-_.freq).toList
def update(guess: String, grade: Grade) =
Notes1(grade.total, genSpaceCandidates(grade), Limiter(Counts.withMax(grade.total - 2), Nil), GuessPack.stream)
}
case class Notes1(phraseLength: Int, spacingCandidates: List[Spacing], limiter: Limiter, guesses: Stream[GuessPack]) extends Notes(1) {
def bestGuess = (chance match {
case x if x < prob => guesses.head.spacing.take(phraseLength)
case _ => spacingCandidates.head.mkString
}) + guesses.head.charSet
def totalFreq = spacingCandidates.foldLeft(0l)({ _ + _.freq })
def chance = spacingCandidates.head.freq * 1.0 / totalFreq
def update(guess: String, grade: Grade) = {
val newLim = limiter.update(guess, grade)
val newCands = spacingCandidates.filter(_.black(guess) == grade.black)
newCands match {
case best :: Nil if newLim.full => Notes3(newLim.allCandidates(best))
case best :: Nil => Notes2(best, newLim, guesses.tail)
case _ => Notes1(phraseLength, newCands, newLim, guesses.tail)
}
}
}
case class Notes2(spacing: Spacing, limiter: Limiter, guesses: Stream[GuessPack]) extends Notes(2) {
def bestGuess = tile(guesses.head.pattern) + guesses.head.charSet
def whiteSide(guess: String): String = guess.drop(spacing.phraseLength)
def blackSide(guess: String): String = guess.take(spacing.phraseLength)
def tile(guess: String) = spacing.lengths.map(guess.take).mkString(" ")
def untile(guess: String) = blackSide(guess).split(" ").maxBy(_.length) + "-"
def update(guess: String, grade: Grade) = {
val newLim = limiter.updateBoth(whiteSide(guess), untile(guess), grade)
if (newLim.full)
Notes3(newLim.allCandidates(spacing))
else
Notes2(spacing, newLim, guesses.tail)
}
}
case class Notes3(candidates: Array[String]) extends Notes(3) {
def bestGuess = sample.minBy(expLogNRC)
def update(guess: String, grade: Grade) =
Notes3(candidates.filter(phrase => grade == Grade.compute(guess, phrase)))
def numRemCands(phrase: String, guess: String): Int = {
val grade = Grade.compute(guess, phrase)
sample.count(phrase => grade == Grade.compute(guess, phrase))
}
val sample = if (candidates.size <= 32) candidates else candidates.sortBy(_.hashCode).take(32)
def expLogNRC(guess: String): Double = sample.map(phrase => Math.log(1.0 * numRemCands(phrase, guess))).sum
}
case class Spacing(wl1: Int, wl2: Int, phraseLength: Int) {
def wl3 = phraseLength - 2 - wl1 - wl2
def lengths = Array(wl1, wl2, wl3)
def pos = Array(wl1, wl1 + 1 + wl2)
def freq = lengths.map(WordList.freq).product
def black(guess: String) = pos.count(guess(_) == ' ')
def mkString = lengths.map("-" * _).mkString(" ")
}
case class Limiter(counts: Counts, guesses: List[String], extraGuesses: List[(String, Grade)] = Nil) {
def full = guesses.size >= minCounts
def update(guess: String, grade: Grade) =
if (guesses.size < Counts.Max)
Limiter(counts.update(grade.total - 2), guess :: guesses)
else
Limiter(counts, guesses, (guess, grade) :: extraGuesses)
def updateBoth(whiteSide: String, blackSide: String, grade: Grade) =
Limiter(counts.update(grade.total - 2).update(grade.black - 2), blackSide :: whiteSide :: guesses)
def isCandidate(phrase: String): Boolean = extraGuesses forall {
case (guess, grade) => grade == Grade.compute(guess, phrase)
}
def allCandidates(spacing: Spacing): Array[String] = {
val order = Array(0, 1, 2).sortBy(-spacing.lengths(_)) //longest word first
val unsort = Array.tabulate(3)(i => order.indexWhere(i == _))
val wordListI = WordList.byLength(spacing.lengths(order(0)))
val wordListJ = WordList.byLength(spacing.lengths(order(1)))
val wordListK = WordList.byLength(spacing.lengths(order(2)))
val gsr = guesses.reverse
val countsI = wordListI.map(Counts.compute(_, gsr).z)
val countsJ = wordListJ.map(Counts.compute(_, gsr).z)
val countsK = wordListK.map(Counts.compute(_, gsr).z)
val rangeI = 0 until wordListI.size
val rangeJ = 0 until wordListJ.size
val rangeK = 0 until wordListK.size
(for {
i <- rangeI.par
if Counts(countsI(i)) <= counts
j <- rangeJ
countsIJ = countsI(i) + countsJ(j)
if Counts(countsIJ) <= counts
k <- rangeK
if countsIJ + countsK(k) == counts.z
words = Array(wordListI(i), wordListJ(j), wordListK(k))
phrase = unsort.map(words).mkString(" ")
if isCandidate(phrase)
} yield phrase).seq.toArray
}
}
object Counts {
val Max = 9
val range = 0 until Max
def withMax(size: Int): Counts = Counts(range.foldLeft(size.toLong) { (z, i) => (z << 6) | size })
def compute(word: String, x: List[String]): Counts = x.foldLeft(Counts.withMax(word.length)) { (c: Counts, s: String) =>
c.update(if (s.last == '-') Grade.computeBlack(word, s) else Grade.computeTotal(word, s))
}
}
case class Counts(z: Long) extends AnyVal {
@inline def +(that: Counts): Counts = Counts(z + that.z)
@inline def apply(i: Int): Int = ((z >> (6 * i)) & 0x3f).toInt
@inline def size: Int = this(Counts.Max)
def <=(that: Counts): Boolean =
Counts.range.forall { i => (this(i) <= that(i)) && (this.size - this(i) <= that.size - that(i)) }
def update(c: Int): Counts = Counts((z << 6) | c)
override def toString = Counts.range.map(apply).map(x => f"$x%2d").mkString(f"Counts[$size%2d](", " ", ")")
}
case class GuessPack(spacing: String, charSet: String, pattern: String)
object GuessPack {
util.Random.setSeed(rngSeed)
val RBF: Any => Boolean = _ => util.Random.nextBoolean() //Random Boolean Function
def genCharsGuess(q: Char => Boolean): String =
(for (c <- 'a' to 'z' if q(c); j <- 1 to WordList.maxCount(c)) yield c).mkString
def charChooser(i: Int)(c: Char): Boolean = c match {
case 'e' => Array(true, true, true, false, false, false)(i % 6)
case 'i' => Array(false, true, false, true, false, true)(i % 6)
case 'a' => Array(true, false, false, true, true, false)(i % 6)
case 's' => Array(false, false, true, false, true, true)(i % 6)
case any => RBF(any)
}
def genSpaceGuess(q: Int => Boolean = RBF): String = genPatternGuess(" -", q)
def genPatternGuess(ab: String, q: Int => Boolean = RBF) =
(for (i <- 0 to 64) yield (if (q(i)) ab(0) else ab(1))).mkString
val firstGuess = genSpaceGuess(i => (i % 2) == 1) + genCharsGuess(_ => true)
val stream: Stream[GuessPack] = Stream.from(0).map { i =>
GuessPack(genSpaceGuess(), genCharsGuess(charChooser(i)), genPatternGuess("eias".filter(charChooser(i))))
}
}
}
object WordList {
val lengthRange = wordList.map(_.length).min until wordList.map(_.length).max
val byLength = Array.tabulate(lengthRange.end)(i => wordList.filter(_.length == i))
def freq(wordLength: Int): Long = if (lengthRange contains wordLength) byLength(wordLength).size else 0
val maxCount: Map[Char, Int] = ('a' to 'z').map(c => (c -> wordList.map(_.count(_ == c)).max * 3)).toMap
}
object Grade {
def apply(black: Int, white: Int): Grade = Grade(black | (white << 8))
val Success = Grade(-1)
def computeBlack(guess: String, phrase: String): Int = {
@inline def posRange: Range = 0 until Math.min(guess.length, phrase.length)
@inline def sameChar(p: Int): Boolean = (guess(p) == phrase(p)) && guess(p) != '-'
posRange count sameChar
}
def computeTotal(guess: String, phrase: String): Int = {
@inline def minCount(c: Char): Int = Math.min(phrase.count(_ == c), guess.count(_ == c))
minCount(' ') + ('a' to 'z').map(minCount).sum
}
def compute(guess: String, phrase: String): Grade = {
val black = computeBlack(guess, phrase)
if (black == guess.length && black == phrase.length)
Grade.Success
else
Grade(black, computeTotal(guess, phrase) - black)
}
}
case class Grade(z: Int) extends AnyVal {
def black: Int = z & 0xff
def white: Int = z >> 8
def total: Int = black + white
def success: Boolean = this == Grade.Success
override def toString = if (success) "SUCCESS" else f"($black%2d/$white%2d)"
}
}