Zeichnen Sie ein Bild mit nur einer geschlossenen Kurve neu


74

Inspiriert von vi.sualize.us

Tor

Die Eingabe ist ein Graustufenbild und die Ausgabe ist ein Schwarzweißbild. Das Ausgabebild besteht nur aus einer geschlossenen Kurve (Schleife), die sich nicht mit sich selbst schneiden oder sich selbst berühren darf. Die Breite der Linie muss über das gesamte Bild konstant sein. Die Herausforderung besteht darin, einen Algorithmus dafür zu finden. Die Ausgabe muss nur das Eingabebild darstellen, aber mit jeder künstlerischen Freiheit. Die Auflösung ist nicht so wichtig, aber das Seitenverhältnis sollte ungefähr gleich bleiben.

Beispiel

Bildbeschreibung hier eingeben Bildbeschreibung hier eingeben

Weitere Testbilder

Loch Ness Wolkenkratzer Einstein Kontrolleur


2
Sie könnten setzen wollen einige Beschränkung auf die relativen Auflösungen. Andernfalls könnte man einfach die Auflösung erheblich erhöhen (beispielsweise um den Faktor 32 oder so) und dann jedes Pixel durch einen 32x32-Block mit angemessener Durchschnittsintensität ersetzen. Es sollte einfach genug sein, alle Blöcke miteinander zu verbinden und sie so anzuordnen, dass alle zu einer einzigen Schleife verbunden sind.
Martin Ender

1
Wenn sich die Linie nicht selbst berühren kann, keine dunklen Bereiche, ist der dunklere Farbton zu 50% grau
edc65 18.08.14

1
@ Martin The width of the line shall be constant throughout the whole image.Aber immer noch ein nützlicher Hinweis
edc65

2
@ edc65 Ja, konstant, aber Sie können es immer noch breiter als ein Pixel machen (konstant). In diesem Fall können zwei Teile der Linie durch ein Pixel getrennt sein, und dann ist dieser Bereich dunkler als die durchschnittliche Intensität von 50%.
Martin Ender

2
@githubphagocyte In erster Linie sollte das Bild schwarzweiß sein, aber es spielt keine Rolle, ob es Anti-Aliasing-Effekte enthält. Und Sie sollten versuchen, diese Situation des diagonalen Berührens von Pixeln zu vermeiden. Wenn dies jedoch nur einige Male im Bild vorkommt, ist dies in Ordnung, solange Sie es nicht systematisch verwenden. Vielen Dank für die Eingabe. @ edc65: Ja, mir ist bewusst, dass das Ziel ist, dass der Betrachter immer noch eine einzelne Linie auf dem Bild identifizieren kann (beim Vergrößern).
Fehler

Antworten:


34

Java: Punktmatrix-Stil

Da noch niemand die Frage beantwortet hat, werde ich es versuchen. Zuerst wollte ich eine Leinwand mit Hilbert-Kurven füllen, aber am Ende habe ich mich für einen einfacheren Ansatz entschieden:

Punktmatrix-Stil Mona Lisa

Hier ist der Code:

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.image.BufferedImage;
import java.io.File;

import javax.imageio.ImageIO;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JScrollPane;

public class LineArt extends JPanel {
    private BufferedImage ref;
    //Images are stored in integers:
    int[] images = new int[] {31, 475, 14683, 469339};
    int[] brightness = new int[] {200,170,120,0};

    public static void main(String[] args) throws Exception {
        new LineArt(args[0]);
    }

    public LineArt(String filename) throws Exception {
        ref = ImageIO.read(new File(filename));
        JFrame frame = new JFrame();
        frame.setVisible(true);
        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        frame.setSize(ref.getWidth()*5, ref.getHeight()*5);
        this.setPreferredSize(new Dimension((ref.getWidth()*5)+20, (ref.getHeight()*5)+20));
        frame.add(new JScrollPane(this));
    }

    @Override
    public void paint(Graphics g) {
        Graphics2D g2d = (Graphics2D) g;
        g2d.setColor(Color.WHITE);
        g2d.fillRect(0, 0, getWidth(), getHeight());
        g2d.translate(10, 10);
        g2d.setColor(Color.BLACK);
        g2d.drawLine(0, 0, 4, 0);
        g2d.drawLine(0, 0, 0, ref.getHeight()*5);

        for(int y = 0; y<ref.getHeight();y++) {
            for(int x = 1; x<ref.getWidth()-1;x++) {
                int light = new Color(ref.getRGB(x, y)).getRed();
                int offset = 0;
                while(brightness[offset]>light) offset++;
                for(int i = 0; i<25;i++) {
                    if((images[offset]&1<<i)>0) {
                        g2d.drawRect((x*5)+i%5, (y*5)+(i/5), 0,0);
                    }
                }
            }
            g2d.drawLine(2, (y*5), 4, (y*5));
            g2d.drawLine((ref.getWidth()*5)-5, (y*5), (ref.getWidth()*5)-1, (y*5));
            if(y%2==0) {
                g2d.drawLine((ref.getWidth()*5)-1, (y*5), (ref.getWidth()*5)-1, (y*5)+4);
            } else {
                g2d.drawLine(2, (y*5), 2, (y*5)+4);
            }
        }
        if(ref.getHeight()%2==0) {
            g2d.drawLine(0, ref.getHeight()*5, 2, ref.getHeight()*5);
        } else {
            g2d.drawLine(0, ref.getHeight()*5, (ref.getWidth()*5)-1, ref.getHeight()*5);
        }
    }
}

Update : Jetzt wird ein Zyklus erstellt, nicht nur eine einzelne Zeile


2
Sehr schöne und einfache Lösung, ich habe mir diese Art der Lösung nicht vorgestellt, aber sie sieht großartig aus!
Fehler

@DenDenDo schlug vor, eine Animation für die Kurvenverkürzung zu zeichnen. Es wäre großartig, wenn Sie eine Textdatei (csv oder was auch immer Sie wollen) mit den Koordinaten aller Conrner-Punkte, die Sie in der richtigen Reihenfolge verwendet haben, bereitstellen könnten. Ich habe ein Matlab-Skript erstellt, um die Animation zu berechnen - aber Sie können es natürlich auch selbst machen =)
flawr

35

Python: Hilbert-Kurve ( 373 361)

Ich habe beschlossen, eine Hilbert-Kurve mit variabler Granularität in Abhängigkeit von der Bildintensität zu zeichnen:

import pylab as pl
from scipy.misc import imresize, imfilter
import turtle

# load image
img = pl.flipud(pl.imread("face.png"))

# setup turtle
levels = 8
size = 2**levels
turtle.setup(img.shape[1] * 4.2, img.shape[0] * 4.2)
turtle.setworldcoordinates(0, 0, size, -size)
turtle.tracer(1000, 0)

# resize and blur image
img = imfilter(imresize(img, (size, size)), 'blur')

# define recursive hilbert curve
def hilbert(level, angle = 90):
    if level == 0:
        return
    if level == 1 and img[-turtle.pos()[1], turtle.pos()[0]] > 128:
        turtle.forward(2**level - 1)
    else:
        turtle.right(angle)
        hilbert(level - 1, -angle)
        turtle.forward(1)
        turtle.left(angle)
        hilbert(level - 1, angle)
        turtle.forward(1)
        hilbert(level - 1, angle)
        turtle.left(angle)
        turtle.forward(1)
        hilbert(level - 1, -angle)
        turtle.right(angle)

# draw hilbert curve
hilbert(levels)
turtle.update()

Eigentlich hatte ich vor, Entscheidungen auf verschiedenen Detailebenen zu treffen, wie "Dieser Punkt ist so hell, dass ich die Rekursion stoppen und zum nächsten Block übergehen werde!". Die Auswertung der Bildintensität vor Ort, die zu großen Bewegungen führt, ist jedoch sehr ungenau und sieht hässlich aus. Also habe ich mich nur entschieden, ob ich Level 1 überspringen oder eine andere Hilbert-Schleife zeichnen soll.

Hier ist das Ergebnis auf dem ersten Testbild:

Ergebnis

Dank @githubphagocyte ist das Rendern ziemlich schnell (mit turtle.tracer). So muss ich nicht die ganze Nacht auf ein Ergebnis warten und kann in mein wohlverdientes Bett gehen. :)


Ein bisschen Code Golf

@flawr: "kurzes programm"? Sie haben die Golfversion noch nicht gesehen! ;)

Also nur zum Spaß:

from pylab import*;from scipy.misc import*;from turtle import*
i=imread("f.p")[::-1];s=256;h=i.shape;i=imfilter(imresize(i,(s,s)),'blur')
setup(h[1]*4.2,h[0]*4.2);setworldcoordinates(0,0,s,-s);f=forward;r=right
def h(l,a=90):
 x,y=pos()
 if l==1and i[-y,x]>128:f(2**l-1)
 else:
  if l:l-=1;r(a);h(l,-a);f(1);r(-a);h(l,a);f(1);h(l,a);r(-a);f(1);h(l,-a);r(a)
h(8)

( 373 361 Zeichen. Aber es wird ewig dauern, bis ich den turte.tracer(...)Befehl entferne !)


Animation von flawr

flawr: Mein Algorithmus wurde leicht modifiziert, was @DenDenDo mir sagte: Ich musste einige Punkte in jeder Iteration löschen, da sich die Konvergenz drastisch verlangsamen würde. Deshalb schneidet sich die Kurve von selbst.

Bildbeschreibung hier eingeben


1
Schön gemacht! Wenn Sie schneller laufen möchten, versuchen Sie es screen.tracer(0)statt turtle.speed(0). Möglicherweise müssen Sie den Bildschirm zu Beginn instanziieren, aber wenn dies die einzige Instanz des Bildschirms ist, werden alle Ihre Schildkröten automatisch ihm zugewiesen. Dann erst screen.update()am Ende die Ergebnisse anzeigen. Ich war erstaunt über den Geschwindigkeitsunterschied, als ich diesen entdeckte ...
Trichoplax

Ich war wirklich überrascht, dass Sie es in einem so kurzen Programm geschafft haben! Aber trotzdem, Glückwunsch! Fraktale ftw =)
Fehler

@DenDenDo schlug vor, eine Animation für die Kurvenverkürzung zu zeichnen. Es wäre großartig, wenn Sie eine Textdatei (csv oder was auch immer Sie wollen) mit den Koordinaten aller Conrner-Punkte, die Sie in der richtigen Reihenfolge verwendet haben, bereitstellen könnten. Ich habe ein Matlab-Skript erstellt, um die Animation zu berechnen - aber natürlich können Sie es auch selbst machen =)
Fehler

@flawr: Hier gehen wir.
Falko

Also hier ist der Code: pastebin.com/wTcwb0nm
flawr

32

Python 3.4 - Problem mit Handlungsreisenden

Das Programm erstellt aus dem Original ein gedithertes Bild:

Bildbeschreibung hier eingeben Bildbeschreibung hier eingeben

Für jedes schwarze Pixel wird zufällig ein Punkt in der Nähe der Pixelmitte generiert, und diese Punkte werden als ein Problem des Handlungsreisenden behandelt . Das Programm speichert in regelmäßigen Abständen eine HTML-Datei mit einem SVG-Bild, um die Pfadlänge zu verringern. Der Pfad beginnt sich selbst zu kreuzen und wird im Laufe der Stunden immer kürzer. Schließlich schneidet sich der Pfad nicht mehr selbst:

Bildbeschreibung hier eingeben

Bildbeschreibung hier eingeben

'''
Traveling Salesman image approximation.
'''

import os.path

from PIL import Image   # This uses Pillow, the PIL fork for Python 3.4
                        # https://pypi.python.org/pypi/Pillow

from random import random, sample, randrange, shuffle
from time import perf_counter


def make_line_picture(image_filename):
    '''Save SVG image of closed curve approximating input image.'''
    input_image_path = os.path.abspath(image_filename)
    image = Image.open(input_image_path)
    width, height = image.size
    scale = 1024 / width
    head, tail = os.path.split(input_image_path)
    output_tail = 'TSP_' + os.path.splitext(tail)[0] + '.html'
    output_filename = os.path.join(head, output_tail)
    points = generate_points(image)
    population = len(points)
    save_dither(points, image)
    grid_cells = [set() for i in range(width * height)]
    line_cells = [set() for i in range(population)]
    print('Initialising acceleration grid')
    for i in range(population):
        recalculate_cells(i, width, points, grid_cells, line_cells)
    while True:
        save_svg(output_filename, width, height, points, scale)
        improve_TSP_solution(points, width, grid_cells, line_cells)


def save_dither(points, image):
    '''Save a copy of the dithered image generated for approximation.'''
    image = image.copy()
    pixels = list(image.getdata())
    pixels = [255] * len(pixels)
    width, height = image.size
    for p in points:
        x = int(p[0])
        y = int(p[1])
        pixels[x+y*width] = 0
    image.putdata(pixels)
    image.save('dither_test.png', 'PNG')


def generate_points(image):
    '''Return a list of points approximating the image.

    All points are offset by small random amounts to prevent parallel lines.'''
    width, height = image.size
    image = image.convert('L')
    pixels = image.getdata()
    points = []
    gap = 1
    r = random
    for y in range(2*gap, height - 2*gap, gap):
        for x in range(2*gap, width - 2*gap, gap):
            if (r()+r()+r()+r()+r()+r())/6 < 1 - pixels[x + y*width]/255:
                        points.append((x + r()*0.5 - 0.25,
                                       y + r()*0.5 - 0.25))
    shuffle(points)
    print('Total number of points', len(points))
    print('Total length', current_total_length(points))
    return points


def current_total_length(points):
    '''Return the total length of the current closed curve approximation.'''
    population = len(points)
    return sum(distance(points[i], points[(i+1)%population])
               for i in range(population))


def recalculate_cells(i, width, points, grid_cells, line_cells):
    '''Recalculate the grid acceleration cells for the line from point i.'''
    for j in line_cells[i]:
        try:
            grid_cells[j].remove(i)
        except KeyError:
            print('grid_cells[j]',grid_cells[j])
            print('i',i)
    line_cells[i] = set()
    add_cells_along_line(i, width, points, grid_cells, line_cells)
    for j in line_cells[i]:
        grid_cells[j].add(i)


def add_cells_along_line(i, width, points, grid_cells, line_cells):
    '''Add each grid cell that lies on the line from point i.'''
    population = len(points)
    start_coords = points[i]
    start_x, start_y = start_coords
    end_coords = points[(i+1) % population]
    end_x, end_y = end_coords
    gradient = (end_y - start_y) / (end_x - start_x)
    y_intercept = start_y - gradient * start_x
    total_distance = distance(start_coords, end_coords)
    x_direction = end_x - start_x
    y_direction = end_y - start_y
    x, y = start_x, start_y
    grid_x, grid_y = int(x), int(y)
    grid_index = grid_x + grid_y * width
    line_cells[i].add(grid_index)
    while True:
        if x_direction > 0:
            x_line = int(x + 1)
        else:
            x_line = int(x)
            if x_line == x:
                x_line = x - 1
        if y_direction > 0:
            y_line = int(y + 1)
        else:
            y_line = int(y)
            if y_line == y:
                y_line = y - 1
        x_line_intersection = gradient * x_line + y_intercept
        y_line_intersection = (y_line - y_intercept) / gradient
        x_line_distance = distance(start_coords, (x_line, x_line_intersection))
        y_line_distance = distance(start_coords, (y_line_intersection, y_line))
        if (x_line_distance > total_distance and
            y_line_distance > total_distance):
            break
        if x_line_distance < y_line_distance:
            x = x_line
            y = gradient * x_line + y_intercept
        else:
            y = y_line
            x = (y_line - y_intercept) / gradient
        grid_x = int(x - (x_direction < 0) * (x == int(x)))
        grid_y = int(y - (y_direction < 0) * (y == int(y)))
        grid_index = grid_x + grid_y * width
        line_cells[i].add(grid_index)


def improve_TSP_solution(points, width, grid_cells, line_cells,
                         performance=[0,0,0], total_length=None):
    '''Apply 3 approaches, allocating time to each based on performance.'''
    population = len(points)
    if total_length is None:
        total_length = current_total_length(points)

    print('Swapping pairs of vertices')
    if performance[0] == max(performance):
        time_limit = 300
    else:
        time_limit = 10
    print('    Aiming for {} seconds'.format(time_limit))
    start_time = perf_counter()
    for n in range(1000000):
        swap_two_vertices(points, width, grid_cells, line_cells)
        if perf_counter() - start_time > time_limit:
            break
    time_taken = perf_counter() - start_time
    old_length = total_length
    total_length = current_total_length(points)
    performance[0] = (old_length - total_length) / time_taken
    print('    Time taken', time_taken)
    print('    Total length', total_length)
    print('    Performance', performance[0])

    print('Moving single vertices')
    if performance[1] == max(performance):
        time_limit = 300
    else:
        time_limit = 10
    print('    Aiming for {} seconds'.format(time_limit))
    start_time = perf_counter()
    for n in range(1000000):
        move_a_single_vertex(points, width, grid_cells, line_cells)
        if perf_counter() - start_time > time_limit:
            break
    time_taken = perf_counter() - start_time
    old_length = total_length
    total_length = current_total_length(points)
    performance[1] = (old_length - total_length) / time_taken
    print('    Time taken', time_taken)
    print('    Total length', total_length)
    print('    Performance', performance[1])

    print('Uncrossing lines')
    if performance[2] == max(performance):
        time_limit = 60
    else:
        time_limit = 10
    print('    Aiming for {} seconds'.format(time_limit))
    start_time = perf_counter()
    for n in range(1000000):
        uncross_lines(points, width, grid_cells, line_cells)
        if perf_counter() - start_time > time_limit:
            break
    time_taken = perf_counter() - start_time        
    old_length = total_length
    total_length = current_total_length(points)
    performance[2] = (old_length - total_length) / time_taken
    print('    Time taken', time_taken)
    print('    Total length', total_length)
    print('    Performance', performance[2])


def swap_two_vertices(points, width, grid_cells, line_cells):
    '''Attempt to find a pair of vertices that reduce length when swapped.'''
    population = len(points)
    for n in range(100):
        candidates = sample(range(population), 2)
        befores = [(candidates[i] - 1) % population
                   for i in (0,1)]
        afters = [(candidates[i] + 1) % population for i in (0,1)]
        current_distance = sum((distance(points[befores[i]],
                                         points[candidates[i]]) +
                                distance(points[candidates[i]],
                                         points[afters[i]]))
                               for i in (0,1))
        (points[candidates[0]],
         points[candidates[1]]) = (points[candidates[1]],
                                   points[candidates[0]])
        befores = [(candidates[i] - 1) % population
                   for i in (0,1)]
        afters = [(candidates[i] + 1) % population for i in (0,1)]
        new_distance = sum((distance(points[befores[i]],
                                     points[candidates[i]]) +
                            distance(points[candidates[i]],
                                     points[afters[i]]))
                           for i in (0,1))
        if new_distance > current_distance:
            (points[candidates[0]],
             points[candidates[1]]) = (points[candidates[1]],
                                       points[candidates[0]])
        else:
            modified_points = tuple(set(befores + candidates))
            for k in modified_points:
                recalculate_cells(k, width, points, grid_cells, line_cells)
            return


def move_a_single_vertex(points, width, grid_cells, line_cells):
    '''Attempt to find a vertex that reduces length when moved elsewhere.'''
    for n in range(100):
        population = len(points)
        candidate = randrange(population)
        offset = randrange(2, population - 1)
        new_location = (candidate + offset) % population
        before_candidate = (candidate - 1) % population
        after_candidate = (candidate + 1) % population
        before_new_location = (new_location - 1) % population
        old_distance = (distance(points[before_candidate], points[candidate]) +
                        distance(points[candidate], points[after_candidate]) +
                        distance(points[before_new_location],
                                 points[new_location]))
        new_distance = (distance(points[before_candidate],
                                 points[after_candidate]) +
                        distance(points[before_new_location],
                                 points[candidate]) +
                        distance(points[candidate], points[new_location]))
        if new_distance <= old_distance:
            if new_location < candidate:
                points[:] = (points[:new_location] +
                             points[candidate:candidate + 1] +
                             points[new_location:candidate] +
                             points[candidate + 1:])
                for k in range(candidate - 1, new_location, -1):
                    for m in line_cells[k]:
                        grid_cells[m].remove(k)
                    line_cells[k] = line_cells[k - 1]
                    for m in line_cells[k]:
                        grid_cells[m].add(k)
                for k in ((new_location - 1) % population,
                          new_location, candidate):
                    recalculate_cells(k, width, points, grid_cells, line_cells)
            else:
                points[:] = (points[:candidate] +
                             points[candidate + 1:new_location] +
                             points[candidate:candidate + 1] +
                             points[new_location:])
                for k in range(candidate, new_location - 3):
                    for m in line_cells[k]:
                        grid_cells[m].remove(k)
                    line_cells[k] = line_cells[k + 1]
                    for m in line_cells[k]:
                        grid_cells[m].add(k)
                for k in ((candidate - 1) % population,
                          new_location - 2, new_location - 1):
                    recalculate_cells(k, width, points, grid_cells, line_cells)
            return


def uncross_lines(points, width, grid_cells, line_cells):
    '''Attempt to find lines that are crossed, and reverse path to uncross.'''
    population = len(points)
    for n in range(100):
        i = randrange(population)
        start_1 = points[i]
        end_1 = points[(i + 1) % population]
        if not line_cells[i]:
            recalculate_cells(i, width, points, grid_cells, line_cells)
        for cell in line_cells[i]:
            for j in grid_cells[cell]:
                if i != j and i != (j+1)%population and i != (j-1)%population:
                    start_2 = points[j]
                    end_2 = points[(j + 1) % population]
                    if are_crossed(start_1, end_1, start_2, end_2):
                        if i < j:
                            points[i + 1:j + 1] = reversed(points[i + 1:j + 1])
                            for k in range(i, j + 1):
                                recalculate_cells(k, width, points, grid_cells,
                                                  line_cells)
                        else:
                            points[j + 1:i + 1] = reversed(points[j + 1:i + 1])
                            for k in range(j, i + 1):
                                recalculate_cells(k, width, points, grid_cells,
                                                  line_cells)
                        return


def are_crossed(start_1, end_1, start_2, end_2):
    '''Return True if the two lines intersect.'''
    if end_1[0]-start_1[0] and end_2[0]-start_2[0]:
        gradient_1 = (end_1[1]-start_1[1])/(end_1[0]-start_1[0])
        gradient_2 = (end_2[1]-start_2[1])/(end_2[0]-start_2[0])
        if gradient_1-gradient_2:
            intercept_1 = start_1[1] - gradient_1 * start_1[0]
            intercept_2 = start_2[1] - gradient_2 * start_2[0]        
            x = (intercept_2 - intercept_1) / (gradient_1 - gradient_2)
            if (x-start_1[0]) * (end_1[0]-x) > 0 and (x-start_2[0]) * (end_2[0]-x) > 0:
                return True


def distance(point_1, point_2):
    '''Return the Euclidean distance between the two points.'''
    return sum((point_1[i] - point_2[i]) ** 2 for i in (0, 1)) ** 0.5


def save_svg(filename, width, height, points, scale):
    '''Save a file containing an SVG path of the points.'''
    print('Saving partial solution\n')
    with open(filename, 'w') as file:
        file.write(content(width, height, points, scale))


def content(width, height, points, scale):
    '''Return the full content to be written to the SVG file.'''
    return (header(width, height, scale) +
            specifics(points, scale) +
            footer()
            )


def header(width, height,scale):
    '''Return the text of the SVG header.'''
    return ('<?xml version="1.0"?>\n'
            '<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"\n'
            '    "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">\n'
            '\n'
            '<svg width="{0}" height="{1}">\n'
            '<title>Traveling Salesman Problem</title>\n'
            '<desc>An approximate solution to the Traveling Salesman Problem</desc>\n'
            ).format(scale*width, scale*height)


def specifics(points, scale):
    '''Return text for the SVG path command.'''
    population = len(points)
    x1, y1 = points[-1]
    x2, y2 = points[0]
    x_mid, y_mid = (x1 + x2) / 2, (y1 + y2) / 2
    text = '<path d="M{},{} L{},{} '.format(x1, y1, x2, y2)
    for i in range(1, population):
        text += 'L{},{} '.format(*points[i])
    text += '" stroke="black" fill="none" stroke-linecap="round" transform="scale({0},{0})" vector-effect="non-scaling-stroke" stroke-width="3"/>'.format(scale)
    return text


def footer():
    '''Return the closing text of the SVG file.'''
    return '\n</svg>\n'


if __name__ == '__main__':
    import sys
    arguments = sys.argv[1:]
    if arguments:
        make_line_picture(arguments[0])
    else:
        print('Required argument: image file')

Das Programm verwendet drei verschiedene Ansätze zur Verbesserung der Lösung und misst die Leistung pro Sekunde für jeden. Die jedem Ansatz zugewiesene Zeit wird so angepasst, dass der Großteil der Zeit für den jeweils besten Ansatz zur Verfügung steht.

Ich habe anfangs versucht zu erraten, wie viel Zeit jedem Ansatz zugewiesen werden muss, aber es stellt sich heraus, dass der effektivste Ansatz im Verlauf des Prozesses sehr unterschiedlich ist. Daher ist es ein großer Unterschied, die automatische Anpassung fortzusetzen.

Die drei einfachen Ansätze sind:

  1. Wähle zufällig zwei Punkte aus und tausche sie aus, wenn dies die Gesamtlänge nicht erhöht.
  2. Wählen Sie einen zufälligen Punkt und einen zufälligen Versatz entlang der Liste der Punkte und verschieben Sie ihn, wenn die Länge nicht zunimmt.
  3. Wählen Sie eine Linie nach dem Zufallsprinzip aus und überprüfen Sie, ob eine andere Linie die Linie kreuzt.

Für Ansatz 3 wird ein Raster verwendet, in dem alle Linien aufgelistet sind, die durch eine bestimmte Zelle verlaufen. Anstatt jede Linie auf der Seite auf Schnittpunkte prüfen zu müssen, werden nur diejenigen geprüft, die eine gemeinsame Rasterzelle haben.


Ich hatte die Idee, das Problem des Handlungsreisenden in einem Blog-Post zu verwenden, den ich vor dem Posten dieser Herausforderung gesehen hatte, aber ich konnte es nicht aufspüren, als ich diese Antwort veröffentlichte. Ich glaube, das Bild in der Herausforderung wurde auch mit einem Verkäufer-Reiseansatz erstellt, kombiniert mit einer Art Wegeglättung, um die scharfen Kurven zu beseitigen.

Ich kann den spezifischen Blog-Beitrag immer noch nicht finden, aber ich habe jetzt einen Verweis auf die Originalarbeiten gefunden, in denen die Mona Lisa verwendet wurde, um das Problem der reisenden Verkäufer zu demonstrieren .

Die TSP-Implementierung hier ist ein hybrider Ansatz, mit dem ich zum Spaß für diese Herausforderung experimentiert habe. Ich hatte die verlinkten Artikel nicht gelesen, als ich das gepostet habe. Meine Annäherung ist im Vergleich dazu schmerzlich langsam. Beachten Sie, dass mein Bild hier weniger als 10.000 Punkte verwendet und viele Stunden benötigt, um so weit zu konvergieren, dass sich keine Linien kreuzen. Das Beispielbild im Link zu den Beiträgen verwendet 100.000 Punkte ...

Leider scheinen die meisten Links jetzt tot zu sein, aber die Arbeit "TSP Art" von Craig S. Kaplan & Robert Bosch 2005 funktioniert immer noch und gibt einen interessanten Überblick über verschiedene Ansätze.


1
Wow, das ist wirklich nett =) (Wenn Sie möchten, dass ich eine kurvenverkürzende Flow-Animation mache, geben Sie einfach eine CSV oder ähnliches mit einer geordneten Liste der Punktkoordinaten an.)
Fehler 30.08.14

@flawr danke! Für die geordnete Liste der Punktkoordinaten sind es fast 10.000 Punkte für das Mona-Lisa-Gesicht. Für die größeren Bilder wären es näher 100.000 Punkte. Deshalb habe ich den SVG-Text hier nicht gepostet ... :)
trichoplax

Nun, Sie könnten pastebin.com oder etwas ähnliches verwenden, aber ich möchte Sie nicht zwingen, es ist Ihre Entscheidung (ich bin nicht gut in Python =)
Fehler

@flawr Ich möchte nicht, dass Sie stundenlang warten müssen, bis das Programm ausgeführt wird. Ich werde meiner Antwort keine Flow-Animation hinzufügen, aber wenn Sie die Punkte für sich selbst haben möchten, lassen Sie es mich wissen und ich kann einen Ort finden, an dem ich sie posten kann ...
trichoplax

Ich hätte nie die Idee von TSP für so etwas! Holen Sie sich das Upvote!
Sergiol

24

Java - Schwingungen

Das Programm zeichnet einen geschlossenen Pfad und fügt Oszillationen hinzu, deren Amplitude und Frequenz von der Bildhelligkeit abhängen. Die "Ecken" des Pfades haben keine Schwingungen, um sicherzustellen, dass sich der Pfad nicht selbst schneidet.

Bildbeschreibung hier eingeben

package trace;

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;

import javax.imageio.ImageIO;

import snake.Image;

public class Main5 {


    private final static int MULT = 3;
    private final static int ROWS = 80; // must be an even number
    private final static int COLS = 40;

    public static void main(String[] args) throws IOException {
        BufferedImage src = ImageIO.read(Image.class.getClassLoader().getResourceAsStream("input.png"));
        BufferedImage dest = new BufferedImage(src.getWidth()*MULT, src.getHeight()*MULT, BufferedImage.TYPE_INT_RGB);

        int [] white = {255, 255, 255};
        for (int y = 0; y < dest.getHeight(); y++) {
            for (int x = 0; x < dest.getWidth(); x++) {
                dest.getRaster().setPixel(x, y, white);
            }
        }
        for (int j = 0; j < ROWS; j++) {
            if (j%2 == 0) {
                for (int i = j==0 ? 0 : 1; i < COLS-1; i++) {
                    drawLine(dest, src, (i+.5)*dest.getWidth()/COLS, (j+.5)*dest.getHeight()/ROWS, (i+1.5)*dest.getWidth()/COLS, (j+.5)*dest.getHeight()/ROWS,
                            i > 1 && i < COLS-2);
                }

                drawLine(dest, src, (COLS-.5)*dest.getWidth()/COLS, (j+.5)*dest.getHeight()/ROWS, (COLS-.5)*dest.getWidth()/COLS, (j+1.5)*dest.getHeight()/ROWS, false);
            } else {
                for (int i = COLS-2; i >= (j == ROWS - 1 ? 0 : 1); i--) {
                    drawLine(dest, src, (i+.5)*dest.getWidth()/COLS, (j+.5)*dest.getHeight()/ROWS, (i+1.5)*dest.getWidth()/COLS, (j+.5)*dest.getHeight()/ROWS,
                            i > 1 && i < COLS-2);
                }
                if (j < ROWS-1) {
                    drawLine(dest, src, (1.5)*dest.getWidth()/COLS, (j+.5)*dest.getHeight()/ROWS, (1.5)*dest.getWidth()/COLS, (j+1.5)*dest.getHeight()/ROWS, false);
                }
            }
            if (j < ROWS-1) {
                drawLine(dest, src, 0.5*dest.getWidth()/COLS, (j+.5)*dest.getHeight()/ROWS, 0.5*dest.getWidth()/COLS, (j+1.5)*dest.getHeight()/ROWS, false);
            }
        }
        ImageIO.write(dest, "png", new File("output.png"));
    }

    private static void drawLine(BufferedImage dest, BufferedImage src, double x1, double y1, double x2, double y2, boolean oscillate) {
        int [] black = {0, 0, 0};

        int col = smoothPixel((int)((x1*.5 + x2*.5) / MULT), (int)((y1*.5+y2*.5) / MULT), src);
        int fact = (255 - col) / 32;
        if (fact > 5) fact = 5;
        double dx = y1 - y2;
        double dy = - (x1 - x2);
        double dist = 2 * (Math.abs(x1 - x2) + Math.abs(y1 - y2)) * (fact + 1);
        for (int i = 0; i <= dist; i++) {
            double amp = oscillate ? (1 - Math.cos(fact * i*Math.PI*2/dist)) * 12 : 0;
            double x = (x1 * i + x2 * (dist - i)) / dist;
            double y = (y1 * i + y2 * (dist - i)) / dist;
            x += dx * amp / COLS;
            y += dy * amp / ROWS;
            dest.getRaster().setPixel((int)x, (int)y, black);
        }
    }

    public static int smoothPixel(int x, int y, BufferedImage src) {
        int sum = 0, count = 0;
        for (int j = -2; j <= 2; j++) {
            for (int i = -2; i <= 2; i++) {
                if (x + i >= 0 && x + i < src.getWidth()) {
                    if (y + j >= 0 && y + j < src.getHeight()) {
                        sum += src.getRGB(x + i, y + j) & 255;
                        count++;
                    }
                }
            }
        }
        return sum / count;
    }
}

Unten ein vergleichbarer Algorithmus, der auf einer Spirale basiert. ( Ich weiß, dass der Weg nicht schließt und dass er sich sicherlich schneidet , ich poste ihn nur der Kunst zuliebe :-)

Bildbeschreibung hier eingeben


Besonders gut gefällt mir die optische Wirkung der Spirale!
Wird

Ich auch, danke fürs Teilen! (Wenn Sie möchten, können Sie auch eine geordnete Liste von
Pfadpunkten erstellen,

@github Danke für deine konstruktiven Kommentare.
Arnaud

1
+1 von mir - es passt jetzt perfekt zu den Regeln, und ich liebe die sanften Übergänge, die die sich ändernde Frequenz gibt.
Trichoplax

21

Java - Rekursiver Pfad

Ich gehe von einem 2x3 geschlossenen Pfad aus. Ich scanne jede Zelle des Pfades und teile ihn in einen neuen 3x3-Unterpfad. Ich versuche jedes Mal, den 3x3-Unterpfad zu wählen, der dem Originalbild "ähnelt". Ich wiederhole den obigen Vorgang viermal.

Bildbeschreibung hier eingeben

Bildbeschreibung hier eingeben

Bildbeschreibung hier eingeben

Hier ist der Code:

package divide;

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import javax.imageio.ImageIO;

import snake.Image;

public class Divide {

    private final static int MULT = 3;
    private final static int ITERATIONS = 4;

    public static void main(String[] args) throws IOException {
        BufferedImage src = ImageIO.read(Image.class.getClassLoader().getResourceAsStream("input.png"));
        BufferedImage dest = new BufferedImage(src.getWidth() * MULT, src.getHeight() * MULT, BufferedImage.TYPE_INT_RGB);
        for (int y = 0; y < src.getHeight() * MULT; y++) {
            for (int x = 0; x < src.getWidth() * MULT; x++) {
                dest.getRaster().setPixel(x, y, new int [] {255, 255, 255});
            }
        }
        List<String> tab = new ArrayList<String>();
        tab.add("rg");
        tab.add("||"); 
        tab.add("LJ");

        for (int k = 1; k <= ITERATIONS; k++) {
            boolean choose = k>=ITERATIONS-1;
            // multiply size by 3
            tab = iterate(src, tab, choose);
            // fill in the white space - if needed
            expand(src, tab, " r", " L", "r-", "L-", choose);
            expand(src, tab, "g ", "J ", "-g", "-J", choose);
            expand(src, tab, "LJ", "  ", "||", "LJ", choose);
            expand(src, tab, "  ", "rg", "rg", "||", choose);
            expand(src, tab, "L-J", "   ", "| |", "L-J", choose);
            expand(src, tab, "   ", "r-g", "r-g", "| |", choose);
            expand(src, tab, "| |", "| |", "Lg|", "rJ|", choose);
            expand(src, tab, "--", "  ", "gr", "LJ", choose);
            expand(src, tab, "  ", "--", "rg", "JL", choose);
            expand(src, tab, "| ", "| ", "Lg", "rJ", choose);
            expand(src, tab, " |", " |", "rJ", "Lg", choose);

            for (String s : tab) {
                System.out.println(s);
            }
            System.out.println();
        }

        for (int j = 0; j < tab.size(); j++) {
            String line = tab.get(j);
            for (int i = 0; i < line.length(); i++) {
                char c = line.charAt(i);
                int xleft = i * dest.getWidth() / line.length();
                int xright = (i+1) * dest.getWidth() / line.length();
                int ytop = j * dest.getHeight() / tab.size();
                int ybottom = (j+1) * dest.getHeight() / tab.size();
                int x = (xleft + xright) / 2;
                int y = (ytop + ybottom) / 2;
                if (c == '|') {
                    drawLine(dest, x, ytop, x, ybottom);
                }
                if (c == '-') {
                    drawLine(dest, xleft, y, xright, y);
                }
                if (c == 'L') {
                    drawLine(dest, x, y, xright, y);
                    drawLine(dest, x, y, x, ytop);
                }
                if (c == 'J') {
                    drawLine(dest, x, y, xleft, y);
                    drawLine(dest, x, y, x, ytop);
                }
                if (c == 'r') {
                    drawLine(dest, x, y, xright, y);
                    drawLine(dest, x, y, x, ybottom);
                }
                if (c == 'g') {
                    drawLine(dest, x, y, xleft, y);
                    drawLine(dest, x, y, x, ybottom);
                }
            }

        }

        ImageIO.write(dest, "png", new File("output.png"));

    }


    private static void drawLine(BufferedImage dest, int x1, int y1, int x2, int y2) {
        int dist = Math.max(Math.abs(x1 - x2), Math.abs(y1 - y2));
        for (int i = 0; i <= dist; i++) {
            int x = (x1*(dist - i) + x2 * i) / dist;
            int y = (y1*(dist - i) + y2 * i) / dist;
            dest.getRaster().setPixel(x, y, new int [] {0, 0, 0});
        }
    }

    private static void expand(BufferedImage src, List<String> tab, String p1, String p2, String r1, String r2, boolean choose) {
        for (int k = 0; k < (choose ? 2 : 1); k++) {
            while (true) {
                boolean again = false;
                for (int j = 0; j < tab.size() - 1; j++) {
                    String line1 = tab.get(j);
                    String line2 = tab.get(j+1);
                    int baseScore = evaluateLine(src, j, tab.size(), line1) + evaluateLine(src, j+1, tab.size(), line2);
                    for (int i = 0; i <= line1.length() - p1.length(); i++) {
                        if (line1.substring(i, i + p1.length()).equals(p1)
                                && line2.substring(i, i + p2.length()).equals(p2)) {
                            String nline1 = line1.substring(0,  i) + r1 + line1.substring(i + p1.length());
                            String nline2 = line2.substring(0,  i) + r2 + line2.substring(i + p2.length());
                            int nScore = evaluateLine(src, j, tab.size(), nline1) + evaluateLine(src, j+1, tab.size(), nline2);
                            if (!choose || nScore > baseScore) {
                                tab.set(j, nline1);
                                tab.set(j+1, nline2);
                                again = true;
                                break;
                            }
                        }
                    }
                    if (again) break;
                }
                if (!again) break;
            }
            String tmp1 = r1;
            String tmp2 = r2;
            r1 = p1;
            r2 = p2;
            p1 = tmp1;
            p2 = tmp2;
        }
    }

    private static int evaluateLine(BufferedImage src, int j, int tabSize, String line) {
        int [] color = {0, 0, 0};
        int score = 0;
        for (int i = 0; i < line.length(); i++) {
            char c = line.charAt(i);
            int x = i*src.getWidth() / line.length();
            int y = j*src.getHeight() / tabSize;
            src.getRaster().getPixel(x, y, color);
            if (c == ' ' && color[0] >= 128) score++;
            if (c != ' ' && color[0] < 128) score++;
        }
        return score;
    }



    private static List<String> iterate(BufferedImage src, List<String> tab, boolean choose) {
        int [] color = {0, 0, 0};
        List<String> tab2 = new ArrayList<String>();
        for (int j = 0; j < tab.size(); j++) {
            String line = tab.get(j);
            String l1 = "", l2 = "", l3 = "";
            for (int i = 0; i < line.length(); i++) {
                char c = line.charAt(i);
                List<String []> candidates = replace(c);
                String [] choice = null;
                if (choose) {

                    int best = 0;
                    for (String [] candidate : candidates) {
                        int bright1 = 0;
                        int bright2 = 0;
                        for (int j1 = 0; j1<3; j1++) {
                            int y = j*3+j1;
                            for (int i1 = 0; i1<3; i1++) {
                                int x = i*3+i1;
                                char c2 = candidate[j1].charAt(i1);
                                src.getRaster().getPixel(x*src.getWidth()/(line.length()*3), y*src.getHeight()/(tab.size()*3), color);
                                if (c2 != ' ') bright1++;
                                if (color[0] > 128) bright2++;
                            }
                        }
                        int score = Math.abs(bright1 - bright2);
                        if (choice == null || score > best) {
                            best = score;
                            choice = candidate;
                        }

                    }
                } else {
                    choice = candidates.get(0);
                }
                //String [] r = candidates.get(rand.nextInt(candidates.size()));
                String [] r = choice;
                l1 += r[0];
                l2 += r[1];
                l3 += r[2];
            }
            tab2.add(l1);
            tab2.add(l2);
            tab2.add(l3);
        }
        return tab2;
    }

    private static List<String []> replace(char c) {
        if (c == 'r') {
            return Arrays.asList(
                    new String[] {
                    "r-g",
                    "| L",
                    "Lg "},
                    new String[] {
                    "   ",
                    " r-",
                    " | "}, 
                    new String[] {
                    "   ",
                    "r--",
                    "Lg "}, 
                    new String[] {
                    " rg",
                    " |L",
                    " | "},
                    new String[] {
                    "   ",
                    "  r",
                    " rJ"});            
        } else if (c == 'g') {
            return Arrays.asList(
                    new String[] {
                    "r-g",
                    "J |",
                    " rJ"},                 
                    new String[] {
                    "   ",
                    "-g ",
                    " | "},
                    new String[] {
                    "   ",
                    "--g",
                    " rJ"},
                    new String[] {
                    "rg ",
                    "J| ",
                    " | "},
                    new String[] {
                    "   ",
                    "g  ",
                    "Lg "});
        } else if (c == 'L') {
            return Arrays.asList(
                    new String[] {
                    "rJ ",
                    "| r",
                    "L-J"},
                    new String[] {
                    " | ",
                    " L-",
                    "   "},
                    new String[] {
                    "rJ ",
                    "L--",
                    "   "},
                    new String[] {
                    " | ",
                    " |r",
                    " LJ"},
                    new String[] {
                    " Lg",
                    "  L",
                    "   "});
        } else if (c == 'J') {
            return Arrays.asList(
                    new String[] {
                    " Lg",
                    "g |",
                    "L-J"},
                    new String[] {
                    " | ",
                    "-J ",
                    "   "},
                    new String[] {
                    " Lg",
                    "--J",
                    "   "},
                    new String[] {
                    " | ",
                    "g| ",
                    "LJ "},
                    new String[] {
                    "rJ ",
                    "J  ",
                    "   "});
        } else if (c == '-') {
            return Arrays.asList(
                    new String[] {
                    " rg",
                    "g|L",
                    "LJ "},
                    new String[] {
                    "rg ",
                    "J|r",
                    " LJ"},
                    new String[] {
                    "   ",
                    "---",
                    "   "},
                    new String[] {
                    "r-g",
                    "J L",
                    "   "},
                    new String[] {
                    "   ",
                    "g r",
                    "L-J"},
                    new String[] {
                    "rg ",
                    "JL-",
                    "   "},
                    new String[] {
                    " rg",
                    "-JL",
                    "   "},                 
                    new String[] {
                    "   ",
                    "gr-",
                    "LJ "},
                    new String[] {
                    "   ",
                    "-gr",
                    " LJ"}                                      
                    );                      
        } else if (c == '|') {
            return Arrays.asList(
                    new String[] {
                    " Lg",
                    "r-J",
                    "Lg "},
                    new String[] {
                    "rJ ",
                    "L-g",
                    " rJ"},
                    new String[] {
                    " | ",
                    " | ",
                    " | "},
                    new String[] {
                    " Lg",
                    "  |",
                    " rJ"},
                    new String[] {
                    "rJ ",
                    "|  ",
                    "Lg "},
                    new String[] {
                    " Lg",
                    " rJ",
                    " | "},
                    new String[] {
                    " | ",
                    " Lg",
                    " rJ"},
                    new String[] {
                    "rJ ",
                    "Lg ",
                    " | "},
                    new String[] {
                    " | ",
                    "rJ ",
                    "Lg "}                  
                    );
        } else {
            List<String []> ret = new ArrayList<String []>();
            ret.add(
                    new String[] {
                    "   ",
                    "   ",
                    "   "});
            return ret;
        }

    }
}

2
Dies scheint eine der innovativsten Lösungen zu sein! +1 für Batman =)
Fehler

Ich liebe dieses.
Trichoplax
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.