Binäre Baumkodierung


12

Angenommen, Sie haben einen vollständigen Binärbaum (dh jeder interne Knoten hat genau zwei nicht leere Nachkommen). Jeder Knoten enthält eine Ganzzahl ungleich Null. Sie haben die Aufgabe, den Baum in / aus einer Liste von ganzen Zahlen zu codieren und zu decodieren.

Der Baum wird intern in etwa wie folgt gespeichert:

struct node {
  int data;
  struct node *left, *right;
};

Und Sie müssen zwei Funktionen implementieren:

int *encode(struct node *root);
struct node *decode(int *array);

Es liegt an Ihnen, wie Sie codieren und decodieren.

Punkte für:

  • minimale Kodierungslänge
  • Komplexität (idealerweise linear in der Anzahl der Knoten)
  • Originalität

Keine Punkte für die Quellcodelänge und Sie sind nicht auf C beschränkt.

Baum Beispiel:

     5
    / \
   3   2
      / \
     2   1
    / \
   9   9

1
Input- und Output-Anforderungen würden nicht schaden.
Yasir Arsanukaev

2
@ Yasir: Der Kodierungsalgorithmus ist Ihre Aufgabe, daher kann ich keine Ein- und Ausgabe bereitstellen. int *ist eine Blackbox für Benutzer.
Alexandru

Gibt es Einschränkungen für den Bereich ganzer Zahlen? Genauer gesagt, wenn wir eine Sprache mit willkürlich großen ganzen Zahlen verwenden, dürfen wir das verwenden? Und wird die Größe der verschlüsselten Daten in Anzahl von ganzen Zahlen oder Anzahl von Bytes gemessen?
1.

Müssen die Codierungs- und Decodierungsfunktionen nebenwirkungsfrei sein (außer Speicherzuweisung)? Oder können sie beispielsweise Daten in globalen Variablen speichern?
1.

1
Angenommen, die Daten-Ganzzahlen selbst sind tatsächliche 32-Bit-Ganzzahlen, gibt es eine einfache Codierung, die nur 32 * n Bits verwendet.
Anon.

Antworten:


2

~ 1,03 N

Es scheint, dass alle bisherigen Antworten mindestens 2 * N * 32-Bit benötigen, um gespeichert zu werden. (Mit Ausnahme der Lösungen in Sprachen, die ganzzahlige Werte von mehr als 32 Bit zulassen, wie die Lösungen von Haskell und Ruby, für deren Codierung jedoch immer noch zusätzliche Bytes erforderlich sind, wenn die Daten größer als 16 KB sind.)

Hier ist eine Lösung, die nur N + Obergrenze (N / 32) + 1 Zoll Speicher benötigt. Dies nähert sich 1,03125 N für großes N und liegt unter 1,1 N für alle N, die größer als 20 sind.

Die Idee ist, ein zusätzliches Bit für jeden Knoten zu speichern, bei dem 1 "hasChildren" ist. Diese Bits werden vorab in N / 32 Wörter gepackt.

int* encodeHelper(Node* n, int* code, int* pos, int* flag)
{
   int hasKids = (n->left!=0);
   code[*flag/32]|=hasKids<<(*flag&31);
   *flag+=1;
   if (hasKids) bencodeHelper(n->left, code, pos, flag);
   code[*pos]=n->data;
   *pos+=1;
   if (hasKids) bencodeHelper(n->right, code, pos, flag);
   return code;
}

int* encode(Node* h, int* sizeOut)
{
   int nnodes=countNodes(h);
   int nflags = (int)ceil(nnodes/32.0);
   int pos=nflags+1;
   int flag=32;
   int* out;
   *sizeOut = 1+nnodes+nflags;
   out = calloc(*sizeOut, sizeof(int));
   if (!h) return out;
   out[0]=nflags+1; //store start of data
   return encodeHelper(h,out,&pos,&flag);
}

Node* decodeHelper(int* code, int* pos, int* flag)
{
   Node*n = calloc(1, sizeof(Node));
   int hasKids = code[*flag/32]>>(*flag&31)&1;
   *flag+=1;
   if (hasKids) n->left = bdecodeHelper(code, pos, flag);
   n->data = code[*pos];
   *pos+=1;
   if (hasKids) n->right = bdecodeHelper(code, pos, flag);
   return n;
}

Node* decode(int* code)
{
   int flag=32;
   int pos=code[0];
   if (!pos) return NULL;
   return decodeHelper(code, &pos, &flag);
}

(Umsetzung hier abschließen)


5

Dieses Haskell-Programm codiert einen Baum von n Knoten in n ganzen Zahlen. Der Trick besteht darin, dass er die Daten des Knotens doppelt codiert und dann mit dem niederwertigen Bit angibt, ob es sich um einen Blattknoten oder einen inneren Knoten handelt.

Technisch gesehen ist die ParserMonade hier Over-Kill, da nur ein Parser erstellt wurde, decoderund ich hätte die Parser-Verkettungslogik direkt dort platzieren können. Aber auf diese Weise ist der Decoder sehr klar und Parsertrotz seiner geringen Größe ein vernünftiges einfaches Parsing-Framework.

import Control.Monad (ap)

data Tree = Leaf Integer | Node Integer Tree Tree
  deriving (Eq, Show)

encode :: Tree -> [Integer]
encode (Leaf n)     = [n*2]
encode (Node n t u) = (n*2+1) : encode t ++ encode u

decode :: [Integer] -> Maybe Tree
decode = fullyParse decoder
  where
    decoder :: Parser Integer Tree
    decoder = do
      i <- next
      let n = i `div` 2
      if even i
        then return (Leaf n)
        else return (Node n) `ap` decoder `ap` decoder

-- A simple Parsing Monad
data Parser a b = P { runParser :: [a] -> Maybe (b, [a]) }

instance Monad (Parser a) where
  return a = P ( \ts -> Just (a, ts) )
  p >>= q  = P ( \ts -> runParser p ts >>= (\(v,ts') -> runParser (q v) ts') )
  fail _   = P ( const Nothing )

next :: Parser a a
next = P n
 where n (t:ts) = Just (t,ts)
       n _      = Nothing

fullyParse :: Parser a b -> [a] -> Maybe b
fullyParse p ts = runParser p ts >>= consumedResult
  where
    consumedResult (v,[]) = Just v
    consumedResult _      = Nothing

-- Example
main :: IO ()
main = do
    putStrLn $ "example:  " ++ show ex
    putStrLn $ "encoding: " ++ show encEx
    putStrLn $ "decoding: " ++ show decEx
    putStrLn $ "worked?   " ++ show worked
  where
    ex = Node 5
          (Leaf 3)
          (Node 2
            (Node 2
              (Leaf 9)
              (Leaf 9)
            )
            (Leaf 1)
          )
    encEx = encode ex
    decEx = decode encEx
    worked = maybe False (ex ==) decEx

Wenn Sie dies ausführen, erhalten Sie:

> runhaskell TreeEncoding.hs 
example:  Node 5 (Leaf 3) (Node 2 (Node 2 (Leaf 9) (Leaf 9)) (Leaf 1))
encoding: [11,6,5,5,18,18,2]
decoding: Just (Node 5 (Leaf 3) (Node 2 (Node 2 (Leaf 9) (Leaf 9)) (Leaf 1)))
worked?   True

4

In C

#include <stdlib.h>
#include <stdio.h>

struct Node;
typedef struct Node Node;

struct Node
{
    int   data;
    Node* left;
    Node* right;
};
/* Private Functions */
static int*  encodeNode(Node* tree, int* store);
static Node* decodeNode(int** store);

/* Public Functions */
Node*   newNode(int data,Node* left,Node* right);
void    deleteTree(Node* tree);
int     countNodesTree(Node* tree);
int*    encode(Node *tree);
Node*   decode(int* store);
void    printTree(Node* tree);

Node* newNode(int data,Node* left,Node* right)
{
    Node* result    = (Node*)malloc(sizeof(Node));
    result->data    = data;
    result->left    = left;
    result->right   = right;

    return result;
}

void deleteTree(Node* tree)
{
    if (tree == NULL)
    {   return;
    }

    deleteTree(tree->left);
    deleteTree(tree->right);
    free(tree);
}

int countNodesTree(Node* tree)
{
    if (tree == NULL)
    {   return 0;
    }

    return    countNodesTree(tree->left)
            + countNodesTree(tree->right)
            + 1;
}

void printTree(Node* tree)
{
    if (tree == NULL)
    {
        fprintf(stdout, "- ");
    }
    else
    {
        fprintf(stdout, "%d ", tree->data);
        printTree(tree->left);
        printTree(tree->right);
    }
};

Die Kodierung:

int* encode(Node *tree)
{
    int     nodeCount   = countNodesTree(tree);
    int*    result      = (int*)malloc(sizeof(int) * (nodeCount * 2 + 1));

    // Put the node count in the first element.
    // This makes it easy to also serialize this object for transport
    // i.e. you can put it in a file or a stream (socket) and easily recover it.
    result[0]           = nodeCount;
    encodeNode(tree, result + 1);
    return result;
}

int* encodeNode(Node* tree, int* store)
{
    if (tree != NULL)
    {
        store[0]    = tree->data;
        /*
         * Slight overkill. for this question.
         * But works and makes future enhancement easy
         */
        store[1]    = (tree->left  == NULL ? 0 : 1)
                    + (tree->right == NULL ? 0 : 2);
        store += 2;

        store       = encodeNode(tree->left,  store);
        store       = encodeNode(tree->right, store);
    }
    return store;
}

Die Entschlüsselung:

Node* decode(int* store)
{
    if (store == NULL)
    { fprintf(stderr, "Bad Input terminating: encode() always return non NULL\n");
      exit(1);
    }

    if (store[0] == 0)
    {
        return NULL;
    }

    store++;
    return decodeNode(&store);
}

Node* decodeNode(int** store)
{
    int     value   = (*store)[0];
    int     flag    = (*store)[1];
    (*store) += 2;

    Node*   left    = flag & 1 ? decodeNode(store) : NULL;
    Node*   right   = flag & 2 ? decodeNode(store) : NULL;

    return newNode(value, left, right);
}

Main:

int main()
{
    Node*   t = newNode(5,
                        newNode(3, NULL, NULL),
                        newNode(2,
                                newNode(2,
                                        newNode(9, NULL, NULL),
                                        newNode(9, NULL, NULL)
                                       ),
                                newNode(1, NULL, NULL)
                               )
                       );

    printTree(t);
    fprintf(stdout,"\n");

    int*    e   = encode(t);
    Node*   d   = decode(e);
    printTree(d);
    fprintf(stdout,"\n");

    free(e);
    deleteTree(d);
    deleteTree(t);
}

Hinweis. Jeder Knoten ist als zwei Ganzzahlen (plus ein Ganzzahl für die Anzahl der Knoten) codiert.
Der mitgelieferte Baum kodiert also wie folgt:

 7, 5, 3, 3, 0, 2, 3, 2, 3, 9, 0, 9, 0 1, 0
 ^  ^
 ^  ^ Node 1
 ^
 Count

3

In Ruby mit derselben Codierung wie @MtnViewMark :

class Node
        def initialize(data, left = nil, right = nil)
                @data, @left, @right = data, left, right
        end

        def encode
                "%d %s %s" % [@data<<1|1, @left.encode, @right.encode]
        end

        class << self
                def decode(str)
                        _decode(str.split.map &:to_i)
                end

                private

                def _decode(a)
                        n = a.shift
                        if n & 1 == 1
                                Node.new(n>>1, _decode(a), _decode(a))
                        else
                                Leaf.new(n>>1)
                        end
                end
        end
end

class Leaf < Node
        def encode
                (@data<<1).to_s
        end
end

tree=Node.decode("11 6 5 5 18 18 2")
print tree.encode

Die Kosten betragen eine Ganzzahl pro Knoten ( data << 1 | has_childs):

11 6 5 5 18 18 2

Wow - das sieht schlank und elegant aus. Es braucht jedoch kein Array von int, oder?
Benutzer unbekannt

2

Bei einem Binärbaum mit nKnoten wird dieser in eine Liste von 2n + 1Ganzzahlen codiert . Sowohl die Codierungs- als auch die Decodierungsalgorithmen habenO(n) komplex.

Ich verwende die Ganzzahl 0 als Sentinel-Markierung beim Codieren und gebe an, wann ich die Rekursion entfalte. Wenn ich dann dekodiere, lege ich die Baumknoten, die ich erstelle, auf einen Stapel (in gewisser Weise) und verwende die Nullen in der Liste, um zu verfolgen, wo der nächste Knoten hinzugefügt werden soll. Ich habe es nicht versucht, aber ich bin mir ziemlich sicher, dass die Dekodierung brechen würde, wenn der Baum nicht vollständig wäre.

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

// Prototypes
struct BTnode;
struct BTnode * bt_add_left(struct BTnode * node, int data);
struct BTnode * bt_add_right(struct BTnode * node, int data);
int             bt_depth(struct BTnode * tree);
int             bt_encode_preorder(int * list, struct BTnode * tree, int index);
struct BTnode * bt_node_create(int data);
int             bt_node_delete(struct BTnode * node);
void            bt_print_preorder(struct BTnode * tree);
int *           encode(struct BTnode * tree);
struct BTnode * decode(int * list);

// Binary tree node
struct BTnode
{
  int data;
  struct BTnode *left, *right;
};

// Add node to this node's left
struct BTnode * bt_add_left(struct BTnode * node, int data)
{
  struct BTnode * newnode = bt_node_create(data);
  node->left = newnode;
  return newnode;
}

// Add node to this node's right
struct BTnode * bt_add_right(struct BTnode * node, int data)
{
  struct BTnode * newnode = bt_node_create(data);
  node->right = newnode;
  return newnode;
}

// Determine depth of the tree
int bt_depth(struct BTnode * tree)
{
  int depth;
  int leftdepth = 0;
  int  rightdepth = 0;
  if( tree == NULL ) return 0;

  if( tree->left != NULL )
    leftdepth = bt_depth(tree->left);
  if( tree->right != NULL )
    rightdepth = bt_depth(tree->right);

  depth = leftdepth;
  if(rightdepth > leftdepth)
    depth = rightdepth;

  return depth + 1;
}

// Recursively add node values to integer list, using 0 as an unfolding sentinel
int bt_encode_preorder(int * list, struct BTnode * tree, int index)
{
  list[ index++ ] = tree->data;

  // This assumes the tree is complete (i.e., if the current node does not have
  // a left child, then it does not have a right child either)
  if( tree->left != NULL )
  {
    index = bt_encode_preorder(list, tree->left, index);
    index = bt_encode_preorder(list, tree->right, index);
  }

  // Add sentinel
  list[ index++ ] = 0;
  return index;
}

// Allocate memory for a node
struct BTnode * bt_node_create(int data)
{
  struct BTnode * newnode = (struct BTnode *) malloc(sizeof(struct BTnode));
  newnode->left = NULL;
  newnode->right = NULL;
  newnode->data = data;
  return newnode;
}

// Free node memory
int bt_node_delete(struct BTnode * node)
{
  int data;
  if(node == NULL)
    return 0;
  data = node->data;

  if(node->left != NULL)
    bt_node_delete(node->left);
  if(node->right != NULL)
    bt_node_delete(node->right);

  free(node);
  return data;
}

// Print all values from the tree in pre-order
void bt_print_preorder(struct BTnode * tree)
{
  printf("%d ", tree->data);
  if(tree->left != NULL)
    bt_print_preorder(tree->left);
  if(tree->right != NULL)
    bt_print_preorder(tree->right);
}

// Decode binary tree structure from a list of integers
struct BTnode * decode(int * list)
{
  struct BTnode * tree;
  struct BTnode * nodestack[ list[0] ];
  int i,j;

  // Handle trivial case
  if( list == NULL ) return NULL;

  tree = bt_node_create( list[1] );
  nodestack[ 1 ] = tree;

  j = 1;
  for(i = 2; i < list[0]; i++)
  {
    if( list[i] == 0 )
    {
      //printf("popping\n");
      j--;
    }
    else
    {
      if( nodestack[j]->left == NULL )
      {
        //printf("Adding %d to left of %d\n", list[i], nodestack[j]->data);
        nodestack[ j+1 ] = bt_add_left(nodestack[j], list[i]);
        j++;
      }
      else
      {
        //printf("Adding %d to right of %d\n", list[i], nodestack[j]->data);
        nodestack[ j+1 ] = bt_add_right(nodestack[j], list[i]);
        j++;
      }
    }
  }

  return tree;
}

// Encode binary tree structure as a list of integers
int * encode(struct BTnode * tree)
{
  int maxnodes, depth, length;
  int * list;
  int j;

  // Handle trivial case
  if(tree == NULL) return NULL;

  // Calculate maximum number of nodes in the tree from the tree depth
  maxnodes = 1;
  depth = bt_depth(tree);
  for(j = 0; j < depth; j++)
  {
    maxnodes += pow(2, j);
  }

  // Allocate memory for the list; we need two ints for each value plus the
  // first value in the list to indicate length
  list = (int *) malloc( ((maxnodes * 2)+1) * sizeof(int));
  length = bt_encode_preorder(list, tree, 1);
  list[ 0 ] = length;
  return list;
}

int main()
{
  struct BTnode * tree;
  struct BTnode * newtree;
  int * list;
  int i;

  /* Provided example

        5
       / \
      3   2
         / \
        2   1
       / \
      9   9
  */
  tree = bt_node_create(5);
  bt_add_left(tree, 3);
  struct BTnode * temp = bt_add_right(tree, 2);
  bt_add_right(temp, 1);
  temp = bt_add_left(temp, 2);
  bt_add_left(temp, 9);
  bt_add_right(temp, 9);
  printf("T (traversed in pre-order):  ");
  bt_print_preorder(tree);
  printf("\n");

  list = encode(tree);
  printf("T (encoded as integer list): ");
  for(i = 1; i < list[0]; i++)
    printf("%d ", list[i]);
  printf("\n");

  newtree = decode(list);
  printf("T' (decoded from int list):  ");
  bt_print_preorder(newtree);
  printf("\n\n");


  // Free memory
  bt_node_delete(tree);
  bt_node_delete(newtree);
  free(list);
  return 0;
}

Gespeichert als encode.cdann kompiliert und ausgeführt. Dieses Programm verwendet den von Ihnen bereitgestellten Beispielbaum und ich habe ihn an einigen anderen erfolgreich getestet.

$ gcc -Wall -lm -o encode encode.c
$ ./encode 
T (traversed in pre-order):  5 3 2 2 9 9 1 
T (encoded as integer list): 5 3 0 2 2 9 0 9 0 0 1 0 0 0 
T' (decoded from int list):  5 3 2 2 9 9 1

Es ist so ziemlich das, was ich mir vorgestellt habe :).
Alexandru

Schlägt dies nicht fehl, wenn die Daten eine 0 enthalten?
AShelly

@AShelly Er sagte ausdrücklich, dass 0 nicht in den Baum aufgenommen werden würde. Wenn es so wäre, dann würde dies ja scheitern.
Daniel Standage

2

Mein Code codiert den Baum in einer Vorbestellungsüberquerung, wobei jedes Blatt in zwei Zoll (seine Daten, gefolgt von 0) und jeder interne Knoten in einem int (seine Daten, gefolgt von seinem linken Kind, dann seinem rechten) codiert wird. Für einen vollständigen Binärbaum (wie Sie ihn definieren) mit n Knoten muss n ungerade sein und es gibt (n + 1) / 2 Blätter und (n-1) / 2 interne Knoten, das sind also 3n / 2 + 1 / 2 ganze Zahlen für die Kodierung.

Warnung: ungetestet, einfach eingetippt.

struct node {
  int data;
  struct node *left, *right;
};

void encodeInternal(struct node *root, vector<int> *buf) {
  buf->push_back(root->data);
  if (root->left) {
    encodeInternal(root->left, buf);
    encodeInternal(root->right, buf);
  } else {
    buf->push_back(0);
  }
}
int *encode(struct node *root) {
  vector<int> buf;
  encodeInternal(root, &buf);
  return &buf[0];
}

struct decodeResult {
  int encoded_size;
  struct node *n;
}
struct decodeResult decodeInternal(int *array) {
  struct node *n = (struct node*)malloc(sizeof(struct node));
  n->data = array[0];
  if (array[1] == 0) {
    n->left = n->right = NULL;
    return (decodeResult){2, n};
  } else {
    decodeResult L = decodeInternal(array + 1);
    decodeResult R = decodeInternal(array + 1 + L.encoded_size);
    n->left = L.n;
    n->right = R.n;
    return (decodeResult){1 + L.encoded_size + R.encoded_size, n};
  }
}
struct node *decode(int *array) {
  return decodeInternal(array).n;
}

1

Hier ist mein Versuch. Der Baum wird in einem Array der Größe 2 ** Tiefe + 1 gespeichert. Es wird verwendet a[0], um die Größe und zu haltena[size] den Index des ersten "leeren Knotens" zu speichern, auf den es bei einer Tiefendurchquerung stößt. (Ein leerer Knoten ist der Ort, an dem ein Kind gespeichert würde, wenn das Elternteil eines hätte). Jeder leere Knoten enthält den Index des nächsten leeren Knotens, der angetroffen wird.

Bei diesem Schema wird vermieden, dass Bits reserviert werden, um die vorhandenen untergeordneten Elemente zu markieren, sodass jeder Knoten den gesamten ganzzahligen Bereich verwenden kann. Es erlaubt auch unausgeglichene Bäume - ein Elternteil kann nur ein Kind haben.

Ausgabe:

empty tree:  [0]
head node only:  [2,5,0]
example tree: [16,5,3,2,5,14,2,1,0,0, 0,0,9,9,15,0,4];

Der Encoder:

//utility
 int findDepth(Node* n) {
    int l = 0 ,r = 0;
    if (n) {
       l = 1 + findDepth(n->left);
       r = 1 + findDepth(n->right);
    }
    return ( l > r ) ? l : r;
 }

//Encode Function
 int* encodeTree(Node* head) {
    int* out;
    int depth = findDepth(head);
    int size = depth>0;
    while (depth--) size*=2;
    out = calloc(size+1,sizeof(int));
    out[0]=size;
    encodeNode(head, out,1, out+size);
    return out;
 }

 void encodeNode(Node* n, int* a, int idx, int* pEmpty) {
    if (n) {
       a[idx]=n->data;
       encodeNode(n->left,a,idx*2,pEmpty);
       encodeNode(n->right,a,idx*2+1,pEmpty);
    }
    else if (idx<a[0]) {
       *pEmpty = idx;
       pEmpty = a+idx;
    }
 }

Der Decoder:

 //Decode Function
 Node* decodeArray(int* a) {
    return (a[0]) ?  decodeNode(a,1,a+a[0]) : NULL;
 }

 Node* decodeNode(int* a, int idx, int* pEmpty) {
    Node* n = NULL;
    if (idx== *pEmpty)
       *pEmpty=a[idx];
    else {
       n = calloc(1,sizeof(Node));
       n->data = a[idx];
       if (idx*2<a[0]) {
          n->left = decodeNode(a, idx*2, pEmpty);
          n->right = decodeNode(a, idx*2+1, pEmpty);
       }
    }
    return n;
 }

(danke @daniel sobral für die Korrektur der Formatierung)


1

Scala:

trait Node {
  def encode (): Array[Int]
}

case object Node {
  def decode (a: Array[Int]): InnerNode = {
    if (a.length == 1) InnerNode (a(0)) else {
      val r = InnerNode (a(1)) 
      val l = decode (a.tail.tail) 
      InnerNode (a(0), l, r) 
    }
  }
}

case object Leaf extends Node {
  def encode (): Array[Int] = Array.empty
}

case class InnerNode (val data: Int, var l: Node=Leaf, var r: Node=Leaf) extends Node {
  def encode (): Array[Int] = Array (data) ++ r.encode () ++ l.encode () 
}

object BinTreeTest extends App {
  println (Node.decode (Array (1, 2, 3, 4, 5)).encode.mkString (", "))
}

Dies ist ein Ansatz, der veraltete Syntax verwendet, in Scala 2.9.1 jedoch fehlerfrei kompiliert wird. Es generiert einen Baum und decodiert jeden codierten Baum in dasselbe Array, das für die Codierung verwendet wird. Vielleicht werde ich die veralteten Warnungen heute irgendwie los.

Wow - das war einfach. Erste Idee hat sofort funktioniert.

Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.