-2 , da wir nicht mehr erforderlich sind , eine leere Liste zu handhaben
, -1 Umschalten von verbinden j@
, verketten, ;
(der verpassten Punkt nicht braucht beschäftigt in der Mitte für das Verfahren angetroffen werden, zu Beginn des Trios zu sein , ist in Ordnung )
-2 vom Einschalten P¬aSH
bis oSH
(OK zwei Ergebnisse haben , da wir glätten, die Hälfte 1
ist 0.5
die ohnehin herausgefiltert wird, und verwendet haben Auswirkungen auf entweder auf dem Verfahren nicht mehr gleichen Ergebnisse mit)
-1 Dank Herrn Xcoder (0-indiziert Eingabe ist erlaubt)
d3ZIỊoSH;µƝFf9Ḷ¤Q⁼
Ein monadischer Link, der eine Liste von Ganzzahlen [0,8]
aufnimmt 1
und einen Wahrheitswert ( 0
) zurückgibt, wenn dies legal ist, und einen Falschwert ( ), wenn dies nicht der Fall ist .
Probieren Sie es online! oder sehen Sie sich eine Testsuite an .
Wie?
Betrachtet jedes benachbarte Paar von 0-indizierten Knoten in der Eingabeliste. Unterscheidet sich die Ganzzahldivision durch drei der beiden durch 2, befinden sie sich in der oberen und unteren Reihe. Unterscheidet sich das Modulo durch drei der beiden durch 2, befinden sie sich in der linken und rechten Spalte. Die Summe solcher Paare geteilt durch zwei ist entweder der 0-indizierte Mittelknoten einer Drei-Knoten-Linie oder ein nicht ganzzahliger Wert - diese Werte werden also zuerst vor dem 0-indizierten Paar und dann vor jedem eingefügt Scheinknoten (wie 0.5
oder3.5
) entfernt werden, wird die resultierende Liste von Listen abgeflacht und dann desupliziert (um auftragsbewahrte, eindeutige Einträge zu erhalten) und schließlich mit der Eingabe verglichen - für einen legalen Swipe wird all dies zu einem No-Op, solange es illegal ist Diese fügen fehlende Mittelknoten hinzu und / oder entfernen doppelte Knoten (beachten Sie, dass für eine Eingabeliste der Länge 1 keine spezielle Groß- / Kleinschreibung erforderlich ist, da keine benachbarten Paare vorhanden sind):
d3ZIỊoSH;µƝFf9Ḷ¤Q⁼ - left input is a list of integers e.g. [3,4,7,1,2,8,3]
µƝ - perform the chain to the left for adjacent pairs:
- e.g. for [a,b] in: [3,4] [4,7] [7,1] [1,2] [2,8] [8,3]
d3 - divmod by 3 [[1,0],[1,1]] [[1,1],[2,1]] [[2,1],[0,1]] [[0,1],[0,2]] [[0,2],[2,2]] [[2,2],[1,0]]
Z - transpose [[1,1],[0,1]] [[1,2],[1,1]] [[2,0],[1,1]] [[0,0],[1,2]] [[0,2],[2,2]] [[2,1],[2,0]]
I - differences [0,1] [1,0] [-2,0] [0,1] [2,0] [-1,-2]
Ị - abs(v)<=1 [1,1] [1,1] [0,1] [1,1] [0,1] [1,0]
S - sum (of [a,b]) 7 11 8 3 10 11
o - OR (vectorises) [1,1] [1,1] [8,1] [1,1] [10,1] [1,11]
H - halve (vectorises) [0.5,0.5] [0.5,0.5] [4,0.5] [0.5,0.5] [5,0.5] [0.5,5.5]
; - concatenate [0.5,0.5,3,4] [0.5,0.5,4,7] [4,0.5,7,1] [0.5,0.5,1,2] [5,0.5,2,8] [0.5,5.5,8,3]
F - flatten [0.5,0.5,3,4, 0.5,0.5,4,7, 4,0.5,7,1, 0.5,0.5,1,2, 5,0.5,2,8, 0.5,5.5,8,3]
¤ - nilad followed by link(s) as a nilad:
9 - literal nine
Ḷ - lowered range = [0,1,2,3,4,5,6,7,8]
f - filter keep [ 3,4, 4,7, 4, 7,1, 1,2, 5, 2,8, ,8,3]
Q - deduplicate [3,4,7,1,2,5,8]
⁼ - equal to the input? e.g. 0 (here because 5 was introduced AND because 3 was removed from the right)
Vorherige Methode
Jelly , 36 35 Bytes
9s3;Z$;“Æ7a‘DZ¤;U$;©0m€2iị®oµƝFQ⁼ȧȦ
Probieren Sie es online! oder sehen Sie sich eine Testsuite an .
Wie?
Ähnlich wie oben, jedoch werden alle Möglichkeiten mit drei Knotenlinien konstruiert und eine Suche durchgeführt (anstatt die Summe für den mittleren Knoten mit divmod zu testen und zu halbieren).
Erstens die Konstruktion der Liste der Dreiknotenlinien:
9s3;Z$;“Æ7a‘DZ¤;U$;©0
9s3 - nine (implicit range) split into threes = [[1,2,3],[4,5,6],[7,8,9]]
$ - last two links as a monad:
Z - transpose = [[1,4,7],[2,5,8],[6,7,9]]
; - concatenate = [[1,2,3],[4,5,6],[7,8,9],[1,4,7],[2,5,8],[3,6,9]]
¤ - nilad followed by link(s) as a nilad:
“Æ7a‘ - code-page index list = [13,55,97]
D - decimal (vectorises) = [[1,3],[5,5],[9,7]]
Z - transpose = [[1,5,9],[3,5,7]]
; - concatenate = [[1,2,3],[4,5,6],[7,8,9],[1,4,7],[2,5,8],[3,6,9],[1,5,9],[3,5,7]]
$ - last two links as a monad:
U - upend = [[3,2,1],[6,5,4],[9,8,7],[7,4,1],[8,5,2],[9,6,3],[9,5,1],[7,5,3]]
; - concatenate = [[1,2,3],[4,5,6],[7,8,9],[1,4,7],[2,5,8],[3,6,9],[1,5,9],[3,5,7],[3,2,1],[6,5,4],[9,8,7],[7,4,1],[8,5,2],[9,6,3],[9,5,1],[7,5,3]]
0 - literal zero (to cater for non-matches in the main link since ị, index into, is 1-based and modular the 0th index is the rightmost)
; - concatenate = [[1,2,3],[4,5,6],[7,8,9],[1,4,7],[2,5,8],[3,6,9],[1,5,9],[3,5,7],[3,2,1],[6,5,4],[9,8,7],[7,4,1],[8,5,2],[9,6,3],[9,5,1],[7,5,3],0]
© - copy the result to the register
Nun die Entscheidungsfindung:
...m€2iị®oµƝFQ⁼ȧȦ - left input is a list of integers e.g. [4,5,8,2,3,9,4]
µƝ - perform the chain to the left for adjacent pairs:
- i.e. for [a,b] in [[4,5],[5,8],[8,2],[2,3],[3,9],[9,4]]
... - perform the code described above = [[1,2,3],[4,5,6],[7,8,9],[1,4,7],[2,5,8],[3,6,9],[1,5,9],[3,5,7],[3,2,1],[6,5,4],[9,8,7],[7,4,1],[8,5,2],[9,6,3],[9,5,1],[7,5,3],0]
m€2 - modulo-2 slice €ach = [[1,3],[4,6],[3,9],[1,7],[2,8],[6,9],[1,9],[3,7],[3,1],[6,4],[9,7],[7,1],[8,2],[9,3],[9,1],[7,3],[0]]
i - index of [a,b] in that (or 0 if not there) e.g. [0,0,13,0,6,0]
® - recall from register = [[1,2,3],[4,5,6],[7,8,9],[1,4,7],[2,5,8],[3,6,9],[1,5,9],[3,5,7],[3,2,1],[6,5,4],[9,8,7],[7,4,1],[8,5,2],[9,6,3],[9,5,1],[7,5,3],0]
ị - index into (1-based & modular) e.g. [0,0,[8,5,2],0,[3,6,9],0]
o - OR [a,b] e.g. [[4,5],[5,8],[8,5,2],[2,3],[3,6,9],[9,4]]
F - flatten e.g. [4,5,5,8,8,5,2,2,3,3,6,9,9,4]
Q - deduplicate e.g. [4,5,8,2,3,6,9]
⁼ - equal to the input? e.g. 0 (here because 6 was introduced AND because 4 was removed from the right)
Ȧ - any and all? (0 if input is empty [or contains a falsey value when flattened - no such input], 1 otherwise)
ȧ - AND (to force an empty input to evaluate as 1 AND 0 = 0)