Während ich mit Zahlen herumkritzelte, fand ich eine interessante Permutation, die Sie aus einer Liste von Zahlen generieren können. Wenn Sie dieselbe Permutation genügend oft wiederholen, gelangen Sie immer zum ursprünglichen Array zurück. Verwenden wir die folgende Liste:
[1, 2, 3, 4, 5]
als Beispiel
Kehren Sie das Array um. Jetzt ist unser Array
[5, 4, 3, 2, 1]
Jedes Paar neu ordnen (tauschen). Unsere Liste enthält 2 Paare:,
[5, 4]
und[3, 2]
. Leider können wir das nicht1
zu einem Paar zusammenfassen, also lassen wir es einfach für sich. Nach dem Tauschen jedes Paares lautet das neue Array:[4, 5, 2, 3, 1]
Wiederholen Sie die Schritte 1 und 2, bis Sie zum ursprünglichen Array zurückkehren. Hier sind die nächsten 4 Schritte:
Step 2: Start: [4, 5, 2, 3, 1] Reversed: [1, 3, 2, 5, 4] Pairs Swapped: [3, 1, 5, 2, 4] Step 3: Start: [3, 1, 5, 2, 4] Reversed: [4, 2, 5, 1, 3] Pairs Swapped: [2, 4, 1, 5, 3] Step 4: Start: [2, 4, 1, 5, 3] Reversed: [3, 5, 1, 4, 2] Pairs Swapped: [5, 3, 4, 1, 2] Step 5: Start: [5, 3, 4, 1, 2] Reversed: [2, 1, 4, 3, 5] Pairs Swapped: [1, 2, 3, 4, 5] # No more steps needed because we are back to the original array
Wenn die Länge der Liste n ungerade ist, dauert es immer genau n Schritte, um zum ursprünglichen Array zurückzukehren. Wenn n gerade ist, dauert es immer 2 Schritte, um zum ursprünglichen Array zurückzukehren, es sei denn, n ist 2. In diesem Fall dauert es 1 Schritt (da Umkehren und Vertauschen dasselbe ist).
Ihre Aufgabe für heute (falls Sie sie akzeptieren möchten) ist es, diesen Satz von Schritten für Listen beliebiger Länge zu visualisieren. Sie müssen ein Programm oder eine Funktion schreiben, die eine einzelne positive Ganzzahl n als Eingabe verwendet, und diese Schritte für die Liste ausführen [1, n]
. Sie müssen jeden Zwischenschritt auf dem Weg ausgeben, dh jeden Schritt drucken oder alle als Liste von Schritten zurückgeben. Ich bin nicht sehr wählerisch in Bezug auf das Ausgabeformat, solange klar ist, dass Sie jeden Schritt generieren. Dies bedeutet (zum Beispiel) Folgendes:
Ausgabe jedes Schritts als Liste an STDOUT
Zurückgeben einer Liste von Listen
Zurückgeben einer Liste mit Zeichenfolgendarstellungen für jeden Schritt
Matrix zurückgeben / ausgeben
wäre akzeptabel.
Sie müssen auch das ursprüngliche Array ausgeben, ob dies am Ende oder am Anfang erfolgt, liegt bei Ihnen. (technisch sind beide richtig)
Sie müssen den Kantenfall von 2 in einem Schritt anstelle von 2 behandeln . Stellen Sie daher sicher, dass Ihre Lösung mit einer Eingabe von 2 funktioniert (und 1 ein weiterer potenzieller Kantenfall ist).
Wie üblich ist dies Codegolf , daher gelten Standardlücken, und versuchen Sie, Ihre Lösung in der Sprache Ihrer Wahl kürzer als jede andere zu machen (oder versuchen Sie sogar, eine andere Sprache zu schlagen, die in der Regel kürzer als Ihre ist, wenn Sie sich müde fühlen für eine Herausforderung).
Testen Sie IO
1:
[1]
2:
[1, 2]
3:
[2, 3, 1]
[3, 1, 2]
[1, 2, 3]
4:
[3, 4, 1, 2]
[1, 2, 3, 4]
5:
[4, 5, 2, 3, 1]
[3, 1, 5, 2, 4]
[2, 4, 1, 5, 3]
[5, 3, 4, 1, 2]
[1, 2, 3, 4, 5]
7:
[6, 7, 4, 5, 2, 3, 1]
[3, 1, 5, 2, 7, 4, 6]
[4, 6, 2, 7, 1, 5, 3]
[5, 3, 7, 1, 6, 2, 4]
[2, 4, 1, 6, 3, 7, 5]
[7, 5, 6, 3, 4, 1, 2]
[1, 2, 3, 4, 5, 6, 7]
9:
[8, 9, 6, 7, 4, 5, 2, 3, 1]
[3, 1, 5, 2, 7, 4, 9, 6, 8]
[6, 8, 4, 9, 2, 7, 1, 5, 3]
[5, 3, 7, 1, 9, 2, 8, 4, 6]
[4, 6, 2, 8, 1, 9, 3, 7, 5]
[7, 5, 9, 3, 8, 1, 6, 2, 4]
[2, 4, 1, 6, 3, 8, 5, 9, 7]
[9, 7, 8, 5, 6, 3, 4, 1, 2]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
Und zum guten Teil ist hier ein riesiger Testfall:
27:
[26, 27, 24, 25, 22, 23, 20, 21, 18, 19, 16, 17, 14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 1]
[3, 1, 5, 2, 7, 4, 9, 6, 11, 8, 13, 10, 15, 12, 17, 14, 19, 16, 21, 18, 23, 20, 25, 22, 27, 24, 26]
[24, 26, 22, 27, 20, 25, 18, 23, 16, 21, 14, 19, 12, 17, 10, 15, 8, 13, 6, 11, 4, 9, 2, 7, 1, 5, 3]
[5, 3, 7, 1, 9, 2, 11, 4, 13, 6, 15, 8, 17, 10, 19, 12, 21, 14, 23, 16, 25, 18, 27, 20, 26, 22, 24]
[22, 24, 20, 26, 18, 27, 16, 25, 14, 23, 12, 21, 10, 19, 8, 17, 6, 15, 4, 13, 2, 11, 1, 9, 3, 7, 5]
[7, 5, 9, 3, 11, 1, 13, 2, 15, 4, 17, 6, 19, 8, 21, 10, 23, 12, 25, 14, 27, 16, 26, 18, 24, 20, 22]
[20, 22, 18, 24, 16, 26, 14, 27, 12, 25, 10, 23, 8, 21, 6, 19, 4, 17, 2, 15, 1, 13, 3, 11, 5, 9, 7]
[9, 7, 11, 5, 13, 3, 15, 1, 17, 2, 19, 4, 21, 6, 23, 8, 25, 10, 27, 12, 26, 14, 24, 16, 22, 18, 20]
[18, 20, 16, 22, 14, 24, 12, 26, 10, 27, 8, 25, 6, 23, 4, 21, 2, 19, 1, 17, 3, 15, 5, 13, 7, 11, 9]
[11, 9, 13, 7, 15, 5, 17, 3, 19, 1, 21, 2, 23, 4, 25, 6, 27, 8, 26, 10, 24, 12, 22, 14, 20, 16, 18]
[16, 18, 14, 20, 12, 22, 10, 24, 8, 26, 6, 27, 4, 25, 2, 23, 1, 21, 3, 19, 5, 17, 7, 15, 9, 13, 11]
[13, 11, 15, 9, 17, 7, 19, 5, 21, 3, 23, 1, 25, 2, 27, 4, 26, 6, 24, 8, 22, 10, 20, 12, 18, 14, 16]
[14, 16, 12, 18, 10, 20, 8, 22, 6, 24, 4, 26, 2, 27, 1, 25, 3, 23, 5, 21, 7, 19, 9, 17, 11, 15, 13]
[15, 13, 17, 11, 19, 9, 21, 7, 23, 5, 25, 3, 27, 1, 26, 2, 24, 4, 22, 6, 20, 8, 18, 10, 16, 12, 14]
[12, 14, 10, 16, 8, 18, 6, 20, 4, 22, 2, 24, 1, 26, 3, 27, 5, 25, 7, 23, 9, 21, 11, 19, 13, 17, 15]
[17, 15, 19, 13, 21, 11, 23, 9, 25, 7, 27, 5, 26, 3, 24, 1, 22, 2, 20, 4, 18, 6, 16, 8, 14, 10, 12]
[10, 12, 8, 14, 6, 16, 4, 18, 2, 20, 1, 22, 3, 24, 5, 26, 7, 27, 9, 25, 11, 23, 13, 21, 15, 19, 17]
[19, 17, 21, 15, 23, 13, 25, 11, 27, 9, 26, 7, 24, 5, 22, 3, 20, 1, 18, 2, 16, 4, 14, 6, 12, 8, 10]
[8, 10, 6, 12, 4, 14, 2, 16, 1, 18, 3, 20, 5, 22, 7, 24, 9, 26, 11, 27, 13, 25, 15, 23, 17, 21, 19]
[21, 19, 23, 17, 25, 15, 27, 13, 26, 11, 24, 9, 22, 7, 20, 5, 18, 3, 16, 1, 14, 2, 12, 4, 10, 6, 8]
[6, 8, 4, 10, 2, 12, 1, 14, 3, 16, 5, 18, 7, 20, 9, 22, 11, 24, 13, 26, 15, 27, 17, 25, 19, 23, 21]
[23, 21, 25, 19, 27, 17, 26, 15, 24, 13, 22, 11, 20, 9, 18, 7, 16, 5, 14, 3, 12, 1, 10, 2, 8, 4, 6]
[4, 6, 2, 8, 1, 10, 3, 12, 5, 14, 7, 16, 9, 18, 11, 20, 13, 22, 15, 24, 17, 26, 19, 27, 21, 25, 23]
[25, 23, 27, 21, 26, 19, 24, 17, 22, 15, 20, 13, 18, 11, 16, 9, 14, 7, 12, 5, 10, 3, 8, 1, 6, 2, 4]
[2, 4, 1, 6, 3, 8, 5, 10, 7, 12, 9, 14, 11, 16, 13, 18, 15, 20, 17, 22, 19, 24, 21, 26, 23, 27, 25]
[27, 25, 26, 23, 24, 21, 22, 19, 20, 17, 18, 15, 16, 13, 14, 11, 12, 9, 10, 7, 8, 5, 6, 3, 4, 1, 2]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]
Viel Spaß beim Golfen!
1 2 3 4 5
nicht sein 1 2 4 3 5
.
array[0]
zu Beginn und am Ende des Prozesses nur 1 bis wird n = 999
. Betrachtet man das Muster, so scheint es, dass für jedes ungerade n das erste Element 1, n-1, 3, n - 3, 5, n - 5, 7...
bis aufsteigt n - 2, 3, n, 1
, was immer n Schritte erfordert. Ich sehe keinen Grund, warum sich dieses Muster mit größerem n ändern würde .
1, n, 2, n-2, 4, n-4, 6, n-6, 8, n-8, ...
und es ist einfach durch Induktion zu zeigen, dass sich ein Element an gerader Position x nach einem Schritt zu nx bewegt und ein Element an einer ungeraden Position x bewegt sich zu n-x + 2 . Wenn also n = 2k + 1 ist , dann ist nach dem 2k- ten Schritt 1 bei 2k und beim nächsten Schritt bei n-2k = 1 .