Ruby - etwa 700 Golfer. Ich begann eine Golf-Version mit Namen aus einem Zeichen für Variablen und Methoden, aber nach einer Weile interessierte ich mich mehr für den Algorithmus als für das Golfspiel, also hörte ich auf, zu versuchen, die Codelänge zu optimieren. Ich habe mich auch nicht darum gekümmert, die Eingabezeichenfolge zu bekommen. Meine Anstrengung ist unten.
Um Ihnen das Verständnis der Funktionsweise zu erleichtern, habe ich Kommentare hinzugefügt, die zeigen, wie eine bestimmte Zeichenfolge (u = "2 1 4 3 0 3 4 4 3 5 0 3") manipuliert wird. Ich zähle Kombinationen von "Felsen im Bach" auf, auf die man springen kann. Diese werden mit einer Binärzeichenfolge dargestellt. Ich gebe das Beispiel 0b0101101010 in den Kommentaren an und zeige, wie es verwendet werden würde. Die Einsen entsprechen den Positionen der Steine, die für die erste Reise zur Verfügung stehen. die 0en für die Rückfahrt. Für jede dieser Zuordnungen verwende ich dynamische Programmierung, um die minimale Anzahl von Hops zu bestimmen, die in jeder Richtung erforderlich sind. Ich führe auch ein paar einfache Optimierungen durch, um einige Kombinationen frühzeitig zu eliminieren.
Ich habe es mit den in anderen Antworten angegebenen Zeichenfolgen ausgeführt und erhalte die gleichen Ergebnisse. Hier sind einige andere Ergebnisse, die ich erhalten habe:
"2 1 4 3 0 3 4 4 3 5 0 3" # => 8
"3 4 3 5 6 4 7 4 3 1 5 6 4 3 1 4" # => 7
"2 3 2 4 5 3 6 3 2 0 4 5 3 2 0 3" # => 10
"3 4 3 0 4 3 4 4 5 3 5 3 0 4 3 3 0 3" # => 11
"2 3 2 4 5 3 6 3 2 0 4 5 3 2 0 3 4 1 6 3 8 2 0 5 2 3" # => 14
Mich würde interessieren, ob andere für diese Saiten die gleichen Ergebnisse erzielen. Die Leistung ist angemessen gut. Beispielsweise dauerte es weniger als eine Minute, um eine Lösung für diese Zeichenfolge zu finden:
3 4 3 0 4 3 4 4 5 3 5 3 0 4 3 3 0 3 4 5 3 2 0 3 4 1 6 3 2 0 4 5 3 2 0 3 4 1 6 3 0 4 3 4 5 0 1
Der Code folgt.
I=99 # infinity - unlikely we'll attempt to solve problems with more than 48 rocks to step on
def leap!(u)
p = u.split.map(&:to_i) # p = [2,1,4,3,0,3,4,4,3,5,0,3]
s = p.shift # s=2, p = [1,4,3,0,3,4,4,3,5,0,3] # start
f = p.pop # f=3, p = [1,4,3,0,3,4,4,3,5,0] # finish
q = p.reverse # q = [0,5,3,4,4,3,0,3,4,1] # reverse order
# No path if cannot get to a non-zero rock from s or f
return -1 if t(p,s) || t(q,f)
@n=p.size # 10 rocks in the stream
r = 2**@n # 10000000000 - 11 binary digits
j = s > @n ? 0 : 2**(@n-s) # 100000000 for s = 2 (cannot leave start if combo number is smaller than j)
k=r-1 # 1111111111 - 10 binary digits
b=I # best number of hops so far (s->f + f->s), initialized to infinity
(j..k).each do |c|
# Representative combo: 0b0101101010, convert to array
c += r # 0b10 1 0 1 1 0 1 0 1 0
c = c.to_s(2).split('').map(&:to_i)
# [1,0,1,0,1,1,0,1,0,1,0]
c.shift # [0,1,0,1,1,0,1,0,1,0] s->f: rock offsets available: 1,3,4,6,8
d = c.map {|e|1-e}.reverse # [1,0,1,0,1,0,0,1,0,1] f->s: rock offsets available: 0,2,5,7,9
c = z(c,p) # [0,4,0,0,3,0,4,0,5,0] s->f: max hops by offset for combo c
d = z(d,q) # [0,0,3,0,4,0,0,3,0,1] f->s: max hops by offset for combo c
# Skip combo if cannot get from to a rock from f, or can't
# get to the end (can always get to a rock from s if s > 0).
next if [s,f,l(c),l(d)].max < @n && t(d,f)
# Compute sum of smallest number of hops from s to f and back to s,
# for combo c, and save it if it is the best solution so far.
b = [b, m([s]+c) + m([f]+d)].min
end
b < I ? b : -1 # return result
end
# t(w,n) returns true if can conclude cannot get from sourch n to destination
def t(w,n) n==0 || (w[0,n].max==0 && n < @n) end
def l(w) w.map.with_index {|e,i|i+e}.max end
def z(c,p) c.zip(p).map {|x,y| x*y} end
def m(p)
# for s->f: p = [2,0,4,0,0,3,0,4,0,5,0] - can be on rock offsets 2,5,7,9
# for f->s: p = [3,0,0,3,0,4,0,0,3,0,1] - can be on rock offsets 3,5,8,10
a=[{d: 0,i: @n+1}]
(0..@n).each do |j|
i=@n-j
v=p[i]
if v > 0
b=[I]
a.each{|h| i+v < h[:i] ? break : b << (1 + h[:d])}
m = b.min
a.unshift({d: m,i: i}) if m < I
end
end
h = a.shift
return h[:i]>0 ? I : h[:d]
end
Thus, it should be clear that one can always jump from the last position.
- Ist das kein1 0
Gegenbeispiel?