Flow Free ist ein süchtig machendes Android-Spiel, bei dem Sie Elementpaare über nicht überlappende Schlangen miteinander verbinden und das gesamte Raster ausfüllen müssen. Eine Beschreibung finden Sie hier:
https://play.google.com/store/apps/details?id=com.bigduckgames.flow&hl=de
Ich habe eine ASP-Lösung (Answer Set Programming), die nur ein paar Regeln enthält, und ich glaube nicht, dass es möglich ist, dieselbe Lösung fast so präzise wie eine SAT-Instanz zu formulieren, aber ich wäre daran interessiert, mich als falsch zu erweisen.
Jede Sprache ist in Ordnung, aber ich bezweifle, dass sie präzise ausgeführt werden kann, ohne dass ein Solver ausgeführt wird, weshalb ich sie als ASP / Prolog / SAT bezeichnet habe
Gewinner sind die wenigsten Charaktere.
Sie können davon ausgehen, dass das Problem mithilfe der Prädikate definiert wird:
v(V). % A vertex
a(V,W). % V and W are adjacent
c(C). % A color
s(V,C). % V is an endpoint of color C
Darüber hinaus erfüllt die Eingabe
a(W,V) :- a(V,W) % Adjacencies are bidirectional
2{s(V,C) : v(V)}2 :- c(C). % Every color has exactly two endpoints
Das Lösungsprädikat hat die Form
e(V,W,C).
Angenommen, es gibt eine Kante zwischen V und W der Farbe C.
Die Kanten müssen bidirektional sein (von derselben Farbe). Jeder Scheitelpunkt muss Kanten von und zu genau einer Farbe haben. Endpunkte haben genau eine Kante, alle anderen Eckpunkte haben genau zwei Kanten. Es gibt keine Schleifen, jede Schlange muss bis zu zwei Endpunkten zurückverfolgbar sein.
Hier ist eine Beispieleingabe zum Testen (5x5 Level 2 im regulären Paket):
v(v11; v12; v13; v14; v15).
v(v21; v22; v23; v24; v25).
v(v31; v32; v33; v34; v35).
v(v41; v42; v43; v44; v45).
v(v51; v52; v53; v54; v55).
a(v11, v12).
a(v12, v13).
a(v13, v14).
a(v14, v15).
a(v12, v11).
a(v13, v12).
a(v14, v13).
a(v15, v14).
a(v11, v21).
a(v12, v22).
a(v13, v23).
a(v14, v24).
a(v15, v25).
a(v21, v22).
a(v22, v23).
a(v23, v24).
a(v24, v25).
a(v22, v21).
a(v23, v22).
a(v24, v23).
a(v25, v24).
a(v21, v31).
a(v22, v32).
a(v23, v33).
a(v24, v34).
a(v25, v35).
a(v21, v11).
a(v22, v12).
a(v23, v13).
a(v24, v14).
a(v25, v15).
a(v31, v32).
a(v32, v33).
a(v33, v34).
a(v34, v35).
a(v32, v31).
a(v33, v32).
a(v34, v33).
a(v35, v34).
a(v31, v41).
a(v32, v42).
a(v33, v43).
a(v34, v44).
a(v35, v45).
a(v31, v21).
a(v32, v22).
a(v33, v23).
a(v34, v24).
a(v35, v25).
a(v41, v42).
a(v42, v43).
a(v43, v44).
a(v44, v45).
a(v42, v41).
a(v43, v42).
a(v44, v43).
a(v45, v44).
a(v41, v51).
a(v42, v52).
a(v43, v53).
a(v44, v54).
a(v45, v55).
a(v41, v31).
a(v42, v32).
a(v43, v33).
a(v44, v34).
a(v45, v35).
a(v51, v52).
a(v52, v53).
a(v53, v54).
a(v54, v55).
a(v52, v51).
a(v53, v52).
a(v54, v53).
a(v55, v54).
a(v51, v41).
a(v52, v42).
a(v53, v43).
a(v54, v44).
a(v55, v45).
s(v11, yellow).
s(v45, yellow).
s(v41, blue).
s(v55, blue).
s(v51, red).
s(v43, red).
s(v42, green).
s(v33, green).
c(red; green; blue; yellow).
Und um die Ausgabe zu testen
shouldbe(v33,v32,green).
shouldbe(v42,v32,green).
shouldbe(v43,v53,red).
shouldbe(v51,v52,red).
shouldbe(v55,v54,blue).
shouldbe(v41,v31,blue).
shouldbe(v45,v35,yellow).
shouldbe(v11,v12,yellow).
shouldbe(v12,v11,yellow).
shouldbe(v35,v45,yellow).
shouldbe(v31,v41,blue).
shouldbe(v54,v55,blue).
shouldbe(v52,v51,red).
shouldbe(v53,v43,red).
shouldbe(v32,v42,green).
shouldbe(v32,v33,green).
shouldbe(v53,v52,red).
shouldbe(v52,v53,red).
shouldbe(v54,v44,blue).
shouldbe(v31,v21,blue).
shouldbe(v35,v25,yellow).
shouldbe(v12,v13,yellow).
shouldbe(v13,v12,yellow).
shouldbe(v25,v35,yellow).
shouldbe(v21,v31,blue).
shouldbe(v44,v54,blue).
shouldbe(v44,v34,blue).
shouldbe(v21,v22,blue).
shouldbe(v25,v15,yellow).
shouldbe(v13,v14,yellow).
shouldbe(v14,v13,yellow).
shouldbe(v15,v25,yellow).
shouldbe(v22,v21,blue).
shouldbe(v34,v44,blue).
shouldbe(v34,v24,blue).
shouldbe(v22,v23,blue).
shouldbe(v15,v14,yellow).
shouldbe(v14,v15,yellow).
shouldbe(v23,v22,blue).
shouldbe(v24,v34,blue).
shouldbe(v24,v23,blue).
shouldbe(v23,v24,blue).
:-not e(V,W,C),shouldbe(V,W,C).
:-e(V,W,C),not shouldbe(V,W,C).
Auch Level 21 5x5 sollte das erste Puzzle mit mehr als 1 Lösung sein (insbesondere gibt es 9 Lösungen, nicht 40). Um Level 21 einzurichten, setzen Sie die letzten Zeilen der Eingabe auf
s(v55, yellow).
s(v44, yellow).
s(v15, blue).
s(v45, blue).
s(v51, red).
s(v53, red).
s(v22, green).
s(v14, green).
s(v23, orange).
s(v43, orange).
c(red; green; blue; yellow; orange).