k I
j k ZZZZX z
xw k C vp yQ KD xw z j k ZZZZX z
j k ZZZD z xw bZ ZX
k XX z qs xw vp xw xw vp xw vp vp vp k I Xj ZZD hd
xw yQ K k ZZZZX xo exx
qs yQ XA xw xw xw xw z xw bZ K
xw xw k I
j k ZZZZX z
xw k C vp yQ XA hd k I z j k ZZZZX z
j xw k A vp bZ ZX
k ZZZZX z qs xw vp xw xw vp xw vp vp vp k I Xj ZZD hd
xw yQ K k ZZZZX xo exx
qs yQ F k ZZZZK xo
vp
xw xw z qs xw bZ X xw k I z xw Xj K
qs xw bZ KA vp qs xw Xj C hd
qs z xw xw xw xw z qs
xw xw xw xw z qs k I qs k I z xw Xj ZC
qs bZ ZZZX qs xw yQ C hd xw
k I vp qs k I qs
xw Xj ZZC hd hd z Kz ZZD
k I z xw xw xw xw z qs k I qs k I Xj ZZZZF
z
xw xw z qs xw bZ X xw k I z xw Xj K
qs xw bZ KA vp qs xw Xj C hd
z qs xw
xw xw z qs xw bZ X xw k I z xw Xj K
qs xw bZ KA vp qs xw Xj C hd
z vp
xw xw z qs
xw xw z qs
k I qs
xw bZ ZZX k I z qs k I vp
xw k ZA z yQ ZA hd qs k I vp qs k I Xj ZZKD
qs xw Xj ZZK
hd qs xw Xj ZZZZ hd
k ZZZZKD vp xo xw Xj K
Probieren Sie es online!
Ich verwende den C-Interpreter, weil der Python-Interpreter auf TIO die Adresse ärgerlicherweise ausführt, wenn die Bedingung für das Zurückspringen nicht erfüllt ist. Ein einfacher Workaround für den Python-Interpreter besteht darin, einige Nops aufzufüllen, um die Adresse als Nop zu definieren. Ich glaube keiner ist richtig:
C Python My interpretation
IP after skiping N words IP+N+1 IP+N+2 IP+N+2
IP after skiping back N words IP-N IP-N+1 IP-N+2
IP after not skiping N words IP+2 IP+2 IP+2
IP after not skiping back N words IP+2 IP+1 IP+2
Die Eingabe sollte aus zwei durch ein Leerzeichen getrennten Ganzzahlen bestehen, ohne dass Zeilenumbrüche folgen.
Diese Antwort funktioniert theoretisch für alle ganzen Zahlen, wenn jede Zelle einen willkürlich großen Wert speichern kann, der nicht auf 0 - 255 beschränkt ist. Sie läuft jedoch über, wenn | A | + | B | > 22. Und es läuft sehr langsam, wenn | A | + | B | > 6. Es gibt also nicht viele Fälle, die Sie tatsächlich testen können, und eine If-else-Lösung für diese Fälle könnte sogar noch kürzer sein.
Die Idee ist, die Dreieckszahlen T (N) = N (N + 1) / 2 durch Dekrementieren des Wertes auf 0 und Summieren aller Zwischenwerte zu berechnen. Dann können wir die Antwort A * B = T (A + B) - T (A) - T (B) erhalten.
Es ist jedoch schwierig, alle drei Werte zu berechnen. Dies geschieht, indem zuerst T (A + B) - A berechnet wird, eine Kopie von A im Stapel verbleibt, die später addiert wird, und die Eingabe B verwendet wird. Dann wird rekursiv die größte dreieckige Zahl ermittelt, die kleiner als diejenige ist, die T (ist. A + B-1) mit Ausnahme der Sonderfälle Null. Wir können B = T (A + B) - A - T (A + B-1) zurückholen und von dort T (B) berechnen.
Eine Zahl N ist eine Dreieckszahl, wenn sie der größten Dreieckszahl kleiner als N plus der Anzahl der nicht negativen Dreieckszahlen kleiner als N entspricht. Dies läuft in O (2 ^ (T (A + B) -A)) und ist der langsamste Teil im Programm.
k I Push 1
j k ZZZZKAAA z Input and decrement by 48.
xw k AAA vp yQ (input_a_loop) If the character was '-':
xw z j k ZZZZKAAA z Replace with 0 and input another.
input_a_loop:
j k ZZZAA z xw bZ (input_a_end) Input and break if it is a space.
k ZKA z qs xw vp xw xw vp xw vp vp vp Otherwise multiply the previous
value by 10 and add.
k I Xj (input_a_loop) Continue the loop.
input_a_end: hd Discard the space.
xw yQ (check_sign) k ZZZZKAAA xo exx If A=0, print 0 and exit.
Stack: ?, A_is_positive, A
check_sign:
qs yQ (check_sign_else) If A is positive... or not,
xw xw xw xw z xw bZ (check_sign_end) in either cases, push 2 copies
check_sign_else: xw xw k I of A and the negated flag back
check_sign_end: as a constant.
Stack: A, A, A, A_is_negative
j k ZZZZKAAA z Similar for B.
xw k AAA vp yQ (input_b_loop) If the character was '-':
hd k I z j k ZZZZKAAA z Decrement the flag and input another.
input_b_loop:
j xw k A vp bZ (input_b_end) EOF is checked instead of a space.
k ZZZZKAAA z qs xw vp xw xw vp xw vp vp vp
k I Xj (input_b_loop)
input_b_end: hd
xw yQ (output_sign) k ZZZZKAAA xo exx If B=0, print 0 and exit.
Stack: A, A, A, A*B_is_negative, B
output_sign:
qs yQ (output_sign_end) k ZZZZK xo If negative, output '-'.
output_sign_end:
vp Add. Stack: A, A, A+B
xw xw z qs Insert a 0. Stack: A, A, 0, A+B.
xw bZ { xw k I z xw Xj } Copy and decrement while nonzero.
Stack: A, A, 0, A+B, A+B-1, ..., 0
qs xw bZ { vp qs xw Xj } hd Add while the second value in the
stack is nonzero.
Stack: A, A, T(A+B)
qs z xw xw xw xw z qs Stack: A, C0=T(A+B)-A, C0, F0=0, C0
expand_loop:
xw xw xw xw z qs k I qs Stack: A, C0, C0, F0=0,
..., [P=C, P, S=0, F=1], C
dec_expand: k I z xw Xj (expand_loop) Decrement and continue if nonzero.
Stack: [P=1, P, S, F], C=0
The last number 0 is assumed to
be a triangular number.
test: qs bZ (extract_end) If F=0, break.
qs xw yQ (test_not_first) hd xw If S=0, it's the first triangular
number below previous C. Set S=C.
test_not_first: k I vp qs k I qs S+=1 and restore F=1.
xw Xj (dec_expand) If C!=0, recursively expand from C-1.
hd hd z Kz (test) If S=P, P is a triangular number,
return to the previous level.
k I z xw xw xw xw z qs k I qs Otherwise, decrement P and try again.
k I Xj (dec_expand)
extract_end: Stack: A, C0, C0, T(A+B-1)
z Subtract and get B.
xw xw z qs xw bZ { xw k I z xw Xj } Computes T(B).
qs xw bZ { vp qs xw Xj } hd
Stack: A, C0, T(B)
z qs xw Stack: C0-T(B), A, A
xw xw z qs xw bZ { xw k I z xw Xj } Computes T(A).
qs xw bZ { vp qs xw Xj } hd
z vp Get A*B=(C0-T(B))+(A-T(A))
xw xw z qs Stack: 0, X=A*B
divide: xw xw z qs Stack: 0, ..., Y=0, X
subtract: k I qs Stack: 0, ..., Y, Z=1, X
xw bZ { While X!=0:
k I z qs k I vp X-=1, Z+=1.
xw k ZA z yQ (not_ten) But if Z=11:
hd qs k I vp qs k I Xj (subtract) Y+=1, reset Z and restart the loop.
not_ten: qs xw Xj }
hd qs xw Xj (divide) Put Z under Y and make Y the new X,
continue the loop if X!=0.
hd Discard X.
print_loop:
k ZZZZKAA vp xo xw Xj (print_loop) Add each cell by 47 and print.