Würde ein Schwarzes Loch durch Hawking-Strahlung verdunsten, bevor Sie den Ereignishorizont überschreiten?


16

Es dauert unendlich lange, bis etwas aus der Perspektive einer Person außerhalb des Ereignishorizonts hinter den Ereignishorizont eines Schwarzen Lochs fällt. Schwarze Löcher verdunsten auch nach einer begrenzten Zeit aus der Sicht eines Außenstehenden aufgrund von Hawking-Strahlung.

Bedeutet dies, dass Sie niemals den Ereignishorizont erreichen würden, wenn Sie in ein Schwarzes Loch fallen würden, weil das Schwarze Loch verdunsten würde?


2
Um ganz klar zu sein, wenn Sie in ein Schwarzes Loch fallen, werden Sie in die Singularität hineinfallen und ihr begegnen, lange bevor sie verflogen ist. Was mit der Person passiert, die hineinfällt, und was die Person, die draußen zuschaut, sieht, sind zwei sehr unterschiedliche Perspektiven desselben Ereignisses .
UserLTK

4
Wie userLTK angibt, bezieht sich die "unendliche Zeitspanne, in der etwas über den Ereignishorizont hinausfallen kann" nur auf einen Beobachter, der beobachtet, wie ein Objekt hineinfällt. Das tatsächliche Objekt, das das "Fallen" ausführt, erfährt dies nicht, daher ist Ihre Frage unbeantwortet. Außerdem sollte die Logik anzeigen, dass, wenn dies wahr wäre, nichts in ein Schwarzes Loch fallen könnte und somit keine Schwarzen Löcher jede Form annehmen oder größer werden könnten.
Zephyr

1
@zephyr Dies ist ein Punkt großer Verwirrung und niemand ist sich ganz sicher, wie man es löst. Es gibt noch keine vollständige Antwort.
Sir Cumference


1
Ich habe dafür gestimmt, diese Frage offen zu lassen - es ist die andere Frage, die als Duplikat geschlossen werden sollte, da Teile davon direkt von dieser kopiert wurden .
Chappo sagt Reinstate Monica

Antworten:


6

Ich habe diese Frage vor ein paar Tagen einigen Physikern gestellt. Großartige Köpfe denken gleich, oder?

Denken Sie zunächst daran, dass die Hawking-Strahlung nur hypothetisch ist. Es ist keine Theorie. Wenn wir dieser Hypothese vertrauen, können wir diese bekommen.

In der Allgemeinen Relativitätstheorie können Schwarze Löcher durch eine Reihe von Näherungen beschrieben werden. Zum Beispiel beschreibt die Schwarzschild-Lösung für ein Schwarzes Loch es als ein ewiges Objekt - etwas, das für einige Zeiten nicht existiert und für andere nicht existiert. Nach dieser Lösung muss der Ereignishorizont immer existiert haben und ewig bestehen bleiben.

Schwarze Schwarzschild-Löcher approximieren Schwarze Löcher sehr genau, aber wie Sie sehen, können sie nicht erklären, wie sich ein Schwarzes Loch bilden kann, und (unter der Annahme, dass Hawking-Strahlung real ist) sie erklären nicht, wie man schließlich verdampfen könnte.

Natürlich hilft uns diese Lösung nicht weiter. Ich habe immer nach einem gesucht, das genau ein verdunstendes, erschaffbares Schwarzes Loch beschreibt, aber ich habe nichts gefunden. Die Schlussfolgerung, zu der ich gekommen bin, ist, dass unsere Frage ein großes Problem hat: Hawking-Strahlung wird über die Quantenfeldtheorie erklärt.

Sie können also nicht einfach eine GR-Lösung für ein Schwarzes Loch verwenden. Sie benötigen eine unheilige Mischung aus Quantenfeldtheorie und allgemeiner Relativitätstheorie (denken Sie daran, dass sowohl GR als auch QFT in vielen Situationen nicht kompatibel sind).

Am Ende kommt es darauf an, wie wenig wir wirklich über Schwarze Löcher wissen. Es ist nicht wirklich möglich zu bestimmen, welche Lösung die beste ist, und unsere Unfähigkeit, QFT mit GR in Einklang zu bringen, wirft ein großes Problem auf. Die beste Antwort, die ich geben konnte, ist: "Niemand weiß wirklich, was passieren würde, wenn Sie sich einem Schwarzen Loch nähern".

Wir wissen nicht, ob wir den Ereignishorizont erreichen würden, wir wissen nicht, ob das Schwarze Loch verdunsten wird. Wir verstehen sie einfach nicht gut genug, um zu wissen, welche Lösung funktionieren oder wie wir QFT einsetzen würden. Wenn es uns irgendwie gelungen wäre, eine Annäherung zu finden, die GR und QFT richtig kombiniert, gehe ich davon aus (zitiere mich aber nicht dazu), dass die von Ihnen beschriebene Situation möglich wäre.

Wenn es übrigens möglich ist, könnten wir mit Zuversicht sagen, dass ein schwarzes Loch jeder Größe Sie durch Gezeitenkräfte auseinanderreißen könnte. Gezeitenkräfte werden mit zunehmender Größe des Schwarzen Lochs schwächer, sodass man davon ausgehen würde, dass ein ausreichend großes Schwarzes Loch Sie nicht auseinander reißen würde.

Wenn wir jedoch die Hawking-Strahlung berücksichtigen und Ihr vorgeschlagenes Szenario tatsächlich korrekt wäre, würde das Schwarze Loch beim Verdampfen schrumpfen. Da es schneller kleiner werden würde, wenn wir uns dem Ereignishorizont nähern, würde es bald klein genug sein, um uns auseinander zu reißen.


2
Unter der Annahme (GROSSE Annahme), dass all dies auf diese Weise funktioniert und wir die Gezeitenkräfte irgendwie überleben können, würden wir dann erleben, wie der Ereignishorizont bei unserer Annäherung immer weiter schrumpft, bis er vollständig verschwindet? Und dann würden wir bemerken, dass in den wenigen Augenblicken (aus unserer Sicht) das Schwarze Loch verschwand, der Rest des Universums Milliarden von Jahren alt wurde?
angerufen2voyage

@ called2voyage nehme ich an? Gott weiß, was wirklich passieren würde, aber ich gehe davon aus, dass dies der Fall ist. Aber selbst wenn Sie die immer stärkeren Gezeitenkräfte irgendwie überstanden hätten, müssten Sie mit der extremen Hitze der Akkretionsscheibe und den unglaublich starken Magnetfeldern fertig werden.
Sir Cumference

Ich frage, weil diese Lösung sehr nach einem Einbahnstraßenwurmloch für die Zukunft klingt.
called2voyage

@ called2voyage Genau so wirkt die Zeitdilatation. Es wäre dasselbe, wenn Sie sich der Lichtgeschwindigkeit nähern würden - Ihre Zeit würde im Vergleich zum Rest des Universums langsamer voranschreiten und die Zeit des Universums würde im Vergleich zu Ihnen schneller voranschreiten. Ein Schwarzes Loch hat keine magischen Zeitreisefähigkeiten, sondern nutzt nur die Gravitationszeitdilatation. Bei allen Objekten mit Gravitation wird die Gravitationszeit verlängert, aber schwarze Löcher verlängern Ihre Zeit bis ins Unendliche, wenn Sie sich ihrem Ereignishorizont nähern.
Sir Cumference

Richtig, aber in diesem Fall überschreitet man nie den Horizont, man landet einfach in der Zukunft.
angerufen2voyage


2

Wie in einem Kommentar von @zephyr erwähnt, ist das Problem der unendlichen Zeit eigentlich kein Problem.

Wenn Sie sich einem Schwarzen Loch nähern, ändert sich die relative Zeit zu Ihrem Standpunkt nicht in der gleichen Weise wie in einem anderen Referenzrahmen.

Wenn Sie Ihre eigene Situation betrachten, würde alles in "Echtzeit" geschehen, aber alles, was über Sie und Ihre Situation beobachtet wird, würde "und unendlich viele Sekunden dauern, bis eine Sekunde verstrichen ist."

Dies ist auch ein Streit Thema, da es Messungen und möglicherweise Beobachtungen (ich müsste dies tatsächlich überprüfen) von Sternen gegeben hat, die in schwarze Löcher "gefallen" sind. Die unendliche Zeit aus der Perspektive des Außenbeobachters ist also auch nicht möglich.

Kurz gesagt, der beste Weg, um Ihre Frage zu beantworten, ohne auf Theorie, Hypothetik oder verrückte Wissenschaft einzugehen, ist einfach zu sagen : Nein, das heißt nicht.


2
Wenn wir gesehen haben, wie ein Stern in ein Schwarzes Loch gefallen ist (das müsste ich selbst überprüfen), heißt das nicht, dass wir gesehen haben, wie der Stern den Ereignishorizont erreicht hat. Wir könnten sehen, wie der Stern auseinandergerissen wird. Es scheint sich willkürlich eng an den Ereignishorizont anzunähern, bis zu dem Punkt, an dem es zu verschwinden scheint, ohne den Ereignishorizont jemals tatsächlich von einem äußeren Bezugsrahmen aus zu erreichen. Die gesamte Masse / Energie von irgendetwas, das in das Schwarze Loch fällt, könnte direkt über dem Ereignishorizont "schweben", wobei die scheinbare Geschwindigkeit asymptotisch gegen Null geht. (Oder ich liege falsch.)
Keith Thompson
Durch die Nutzung unserer Website bestätigen Sie, dass Sie unsere Cookie-Richtlinie und Datenschutzrichtlinie gelesen und verstanden haben.
Licensed under cc by-sa 3.0 with attribution required.